
API reference#
Overview#
This API reference documentation was automatically generated using the Autodoc Sphinx extension.
Autodoc automatically processes the documentation of Mitsuba’s Python bindings, hence all C++ function and class signatures are documented through their Python counterparts. Mitsuba’s bindings mimic the C++ API as closely as possible, hence this documentation should still prove valuable even for C++ developers.
Core#
- mitsuba.render(scene, params=None, sensor=0, integrator=None, seed=0, seed_grad=0, spp=0, spp_grad=0)#
This function provides a convenient high-level interface to differentiable rendering algorithms in Mi. The function returns a rendered image that can be used in subsequent differentiable computation steps. At any later point, the entire computation graph can be differentiated end-to-end in either forward or reverse mode (i.e., using
dr.forward()
anddr.backward()
).Under the hood, the differentiation operation will be intercepted and routed to
Integrator.render_forward()
orIntegrator.render_backward()
, which evaluate the derivative using either naive AD or a more specialized differential simulation.Note the default implementation of this functionality relies on naive automatic differentiation (AD), which records a computation graph of the primal rendering step that is subsequently traversed to propagate derivatives. This tends to be relatively inefficient due to the need to track intermediate program state. In particular, it means that differentiation of nontrivial scenes at high sample counts will often run out of memory. Integrators like
rb
(Radiative Backpropagation) andprb
(Path Replay Backpropagation) that are specifically designed for differentiation can be significantly more efficient.- Parameter
scene
(mi.Scene
): Reference to the scene being rendered in a differentiable manner.
- Parameter
params
(Any): An optional container of scene parameters that should receive gradients. This argument isn’t optional when computing forward mode derivatives. It should be an instance of type
mi.SceneParameters
obtained viami.traverse()
. Gradient tracking must be explicitly enabled on these parameters usingdr.enable_grad(params['parameter_name'])
(i.e.render()
will not do this for you). Furthermore,dr.set_grad(...)
must be used to associate specific gradient values with parameters if forward mode derivatives are desired. When the scene parameters are derived from other variables that have gradient tracking enabled, gradient values should be propagated to the scene parameters by callingdr.forward_to(params, dr.ADFlag.ClearEdges)
before calling this function.- Parameter
sensor
(int
,mi.Sensor
): Specify a sensor or a (sensor index) to render the scene from a different viewpoint. By default, the first sensor within the scene description (index 0) will take precedence.
- Parameter
integrator
(mi.Integrator
): Optional parameter to override the rendering technique to be used. By default, the integrator specified in the original scene description will be used.
- Parameter
seed
(int
) This parameter controls the initialization of the random number generator during the primal rendering step. It is crucial that you specify different seeds (e.g., an increasing sequence) if subsequent calls should produce statistically independent images (e.g. to de-correlate gradient-based optimization steps).
- Parameter
seed_grad
(int
) This parameter is analogous to the
seed
parameter but targets the differential simulation phase. If not specified, the implementation will automatically compute a suitable value from the primalseed
.- Parameter
spp
(int
): Optional parameter to override the number of samples per pixel for the primal rendering step. The value provided within the original scene specification takes precedence if
spp=0
.- Parameter
spp_grad
(int
): This parameter is analogous to the
seed
parameter but targets the differential simulation phase. If not specified, the implementation will copy the value fromspp
.- Parameter
scene
(mi.Scene): no description available
- Parameter
sensor
(Union[int, mi.Sensor]): no description available
- Parameter
integrator
(mi.Integrator): no description available
- Parameter
seed
(int): no description available
- Parameter
seed_grad
(int): no description available
- Parameter
spp
(int): no description available
- Parameter
spp_grad
(int): no description available
- Returns → mi.TensorXf:
no description available
- Parameter
- mitsuba.set_variant()#
Set the variant to be used by the
mitsuba
module. Multiple variant names can be passed to this function and the first one that is supported will be set as current variant.- Returns → None:
no description available
- mitsuba.variant()#
Return currently enabled variant
- Returns → str:
no description available
- mitsuba.traverse(node)#
Traverse a node of Mitsuba’s scene graph and return a dictionary-like object that can be used to read and write associated scene parameters.
See also
mitsuba.SceneParameters
.- Parameter
node
(~:py:obj:mitsuba.Object
): no description available
- Returns → ~:py:obj:
mitsuba.python.util.SceneParameters
: no description available
- Parameter
- class mitsuba.SceneParameters#
Dictionary-like object that references various parameters used in a Mitsuba scene graph. Parameters can be read and written using standard syntax (
parameter_map[key]
). The class exposes several non-standard functions, specificallytorch`()
,update`()
, andkeep`()
.- __init__()#
Private constructor (use
mitsuba.traverse()
instead)
- items()#
- Returns → a set-like object providing a view on D’s items:
no description available
- keys()#
- Returns → a set-like object providing a view on D’s keys:
no description available
- flags(key)#
Return parameter flags
- Parameter
key
(str): no description available
- Parameter
- set_dirty(key)#
Marks a specific parameter and its parent objects as dirty. A subsequent call to
update`()
will refresh their internal state.This method should rarely be called explicitly. The
SceneParameters`
will detect most operations on its values and automatically flag them as dirty. A common exception to the detection mechanism is thescatter()
operation which needs an explicit call toset_dirty`()
.- Parameter
key
(str): no description available
- Parameter
- update(values=None)#
This function should be called at the end of a sequence of writes to the dictionary. It automatically notifies all modified Mitsuba objects and their parent objects that they should refresh their internal state. For instance, the scene may rebuild the kd-tree when a shape was modified, etc.
The return value of this function is a list of tuples where each tuple corresponds to a Mitsuba node/object that is updated. The tuple’s first element is the node itself. The second element is the set of keys that the node is being updated for.
- Parameter
values
(dict
): Optional dictionary-like object containing a set of keys and values to be used to overwrite scene parameters. This operation will happen before propagating the update further into the scene internal state.
- Parameter
values
(dict): no description available
- Returns → list[tuple[Any, set]]:
no description available
- Parameter
- keep(keys)#
Reduce the size of the dictionary by only keeping elements, whose keys are defined by ‘keys’.
- Parameter
keys
(None
,str
,[str]
): Specifies which parameters should be kept. Regex are supported to define a subset of parameters at once. If set to
None
, all differentiable scene parameters will be loaded.- Parameter
keys
(None | str | list[str]): no description available
- Returns → None:
no description available
- Parameter
- mitsuba.variants()#
Return a list of all variants that have been compiled
- Returns → ~typing.List[str]:
no description available
- mitsuba.set_log_level(arg0)#
- Parameter
arg0
(mitsuba::LogLevel): no description available
- Returns → None:
no description available
- Parameter
- class mitsuba.ArgParser#
Minimal command line argument parser
This class provides a minimal cross-platform command line argument parser in the spirit of to GNU getopt. Both short and long arguments that accept an optional extra value are supported.
The typical usage is
ArgParser p; auto arg0 = p.register("--myParameter"); auto arg1 = p.register("-f", true); p.parse(argc, argv); if (*arg0) std::cout << "Got --myParameter" << std::endl; if (*arg1) std::cout << "Got -f " << arg1->value() << std::endl;
- __init__(self)#
- add(overloaded)#
- add(self, prefix, extra=False)#
Register a new argument with the given list of prefixes
- Parameter
prefixes
(List[str]): A list of command prefixes (i.e. {“-f”, “–fast”})
- Parameter
extra
(bool): Indicates whether the argument accepts an extra argument value
- Parameter
prefix
(str): no description available
- Returns →
mitsuba.ArgParser.Arg
: no description available
- Parameter
- add(self, prefixes, extra=False)#
Register a new argument with the given prefix
- Parameter
prefix
: A single command prefix (i.e. “-f”)
- Parameter
extra
(bool): Indicates whether the argument accepts an extra argument value
- Returns →
mitsuba.ArgParser.Arg
: no description available
- Parameter
- executable_name(self)#
- Returns → str:
no description available
- parse(self, arg0)#
Parse the given set of command line arguments
- Parameter
arg0
(List[str]): no description available
- Returns → None:
no description available
- Parameter
- class mitsuba.AtomicFloat#
Atomic floating point data type
The class implements an an atomic floating point data type (which is not possible with the existing overloads provided by
std::atomic
). It internally casts floating point values to an integer storage format and uses atomic integer compare and exchange operations to perform changes.- __init__(self, arg0)#
Initialize the AtomicFloat with a given floating point value
- Parameter
arg0
(float): no description available
- Parameter
- class mitsuba.DefaultFormatter#
Base class:
mitsuba.Formatter
The default formatter used to turn log messages into a human-readable form
- __init__(self)#
- has_class(self)#
- See also:
set_has_class
- Returns → bool:
no description available
- has_date(self)#
- See also:
set_has_date
- Returns → bool:
no description available
- has_log_level(self)#
- See also:
set_has_log_level
- Returns → bool:
no description available
- has_thread(self)#
- See also:
set_has_thread
- Returns → bool:
no description available
- set_has_class(self, arg0)#
Should class information be included? The default is yes.
- Parameter
arg0
(bool): no description available
- Returns → None:
no description available
- Parameter
- set_has_date(self, arg0)#
Should date information be included? The default is yes.
- Parameter
arg0
(bool): no description available
- Returns → None:
no description available
- Parameter
- set_has_log_level(self, arg0)#
Should log level information be included? The default is yes.
- Parameter
arg0
(bool): no description available
- Returns → None:
no description available
- Parameter
- set_has_thread(self, arg0)#
Should thread information be included? The default is yes.
- Parameter
arg0
(bool): no description available
- Returns → None:
no description available
- Parameter
- class mitsuba.DummyStream#
Base class:
mitsuba.Stream
Stream implementation that never writes to disk, but keeps track of the size of the content being written. It can be used, for example, to measure the precise amount of memory needed to store serialized content.
- __init__(self)#
- class mitsuba.FileStream#
Base class:
mitsuba.Stream
Simple Stream implementation backed-up by a file.
The underlying file abstraction is
std::fstream
, and so most operations can be expected to behave similarly.- __init__(self, p, mode=<EMode., ERead)#
Constructs a new FileStream by opening the file pointed by
p
.The file is opened in read-only or read/write mode as specified by
mode
.Throws if trying to open a non-existing file in with write disabled. Throws an exception if the file cannot be opened / created.
- Parameter
p
(mitsuba.filesystem.path
): no description available
- Parameter
mode
(mitsuba.FileStream.EMode
): no description available
- Parameter
ERead
(0>): no description available
- Parameter
- class EMode#
Members:
- ERead#
Opens a file in (binary) read-only mode
- EReadWrite#
Opens (but never creates) a file in (binary) read-write mode
- ETruncReadWrite#
Opens (and truncates) a file in (binary) read-write mode
- __init__(self, value)#
- Parameter
value
(int): no description available
- Parameter
- property EMode.name#
- path(self)#
Return the path descriptor associated with this FileStream
- Returns →
mitsuba.filesystem.path
: no description available
- Returns →
- class mitsuba.MemoryStream#
Base class:
mitsuba.Stream
Simple memory buffer-based stream with automatic memory management. It always has read & write capabilities.
The underlying memory storage of this implementation dynamically expands as data is written to the stream, à la
std::vector
.- __init__(self, capacity=512)#
Creates a new memory stream, initializing the memory buffer with a capacity of
capacity
bytes. For best performance, set this argument to the estimated size of the content that will be written to the stream.- Parameter
capacity
(int): no description available
- Parameter
- capacity(self)#
Return the current capacity of the underlying memory buffer
- Returns → int:
no description available
- owns_buffer(self)#
Return whether or not the memory stream owns the underlying buffer
- Returns → bool:
no description available
- raw_buffer(self)#
- Returns → bytes:
no description available
- class mitsuba.Stream#
Base class:
mitsuba.Object
Abstract seekable stream class
Specifies all functions to be implemented by stream subclasses and provides various convenience functions layered on top of on them.
All
read*()
andwrite*()
methods support transparent conversion based on the endianness of the underlying system and the value passed to set_byte_order(). Whenever host_byte_order() and byte_order() disagree, the endianness is swapped.- See also:
FileStream, MemoryStream, DummyStream
- class EByteOrder#
Defines the byte order (endianness) to use in this Stream
Members:
- EBigEndian#
- ELittleEndian#
PowerPC, SPARC, Motorola 68K
- ENetworkByteOrder#
x86, x86_64
- __init__(self, value)#
- Parameter
value
(int): no description available
- Parameter
- property EByteOrder.name#
- byte_order(self)#
Returns the byte order of this stream.
- Returns →
mitsuba.Stream.EByteOrder
: no description available
- Returns →
- can_read(self)#
Can we read from the stream?
- Returns → bool:
no description available
- can_write(self)#
Can we write to the stream?
- Returns → bool:
no description available
- close(self)#
Closes the stream.
No further read or write operations are permitted.
This function is idempotent. It may be called automatically by the destructor.
- Returns → None:
no description available
- flush(self)#
Flushes the stream’s buffers, if any
- Returns → None:
no description available
- host_byte_order()#
Returns the byte order of the underlying machine.
- Returns →
mitsuba.Stream.EByteOrder
: no description available
- Returns →
- read(self, arg0)#
Writes a specified amount of data into the stream. note This does not handle endianness swapping.
Throws an exception when not all data could be written. Implementations need to handle endianness swap when appropriate.
- Parameter
arg0
(int): no description available
- Returns → bytes:
no description available
- Parameter
- read_bool(self)#
Reads one object of type T from the stream at the current position by delegating to the appropriate
serialization_helper
.Endianness swapping is handled automatically if needed.
- Returns → object:
no description available
- read_double(self)#
Reads one object of type T from the stream at the current position by delegating to the appropriate
serialization_helper
.Endianness swapping is handled automatically if needed.
- Returns → object:
no description available
- read_float(self)#
Reads one object of type T from the stream at the current position by delegating to the appropriate
serialization_helper
.Endianness swapping is handled automatically if needed.
- Returns → object:
no description available
- read_int16(self)#
Reads one object of type T from the stream at the current position by delegating to the appropriate
serialization_helper
.Endianness swapping is handled automatically if needed.
- Returns → object:
no description available
- read_int32(self)#
Reads one object of type T from the stream at the current position by delegating to the appropriate
serialization_helper
.Endianness swapping is handled automatically if needed.
- Returns → object:
no description available
- read_int64(self)#
Reads one object of type T from the stream at the current position by delegating to the appropriate
serialization_helper
.Endianness swapping is handled automatically if needed.
- Returns → object:
no description available
- read_int8(self)#
Reads one object of type T from the stream at the current position by delegating to the appropriate
serialization_helper
.Endianness swapping is handled automatically if needed.
- Returns → object:
no description available
- read_line(self)#
Convenience function for reading a line of text from an ASCII file
- Returns → str:
no description available
- read_single(self)#
Reads one object of type T from the stream at the current position by delegating to the appropriate
serialization_helper
.Endianness swapping is handled automatically if needed.
- Returns → object:
no description available
- read_string(self)#
Reads one object of type T from the stream at the current position by delegating to the appropriate
serialization_helper
.Endianness swapping is handled automatically if needed.
- Returns → object:
no description available
- read_uint16(self)#
Reads one object of type T from the stream at the current position by delegating to the appropriate
serialization_helper
.Endianness swapping is handled automatically if needed.
- Returns → object:
no description available
- read_uint32(self)#
Reads one object of type T from the stream at the current position by delegating to the appropriate
serialization_helper
.Endianness swapping is handled automatically if needed.
- Returns → object:
no description available
- read_uint64(self)#
Reads one object of type T from the stream at the current position by delegating to the appropriate
serialization_helper
.Endianness swapping is handled automatically if needed.
- Returns → object:
no description available
- read_uint8(self)#
Reads one object of type T from the stream at the current position by delegating to the appropriate
serialization_helper
.Endianness swapping is handled automatically if needed.
- Returns → object:
no description available
- seek(self, arg0)#
Seeks to a position inside the stream.
Seeking beyond the size of the buffer will not modify the length of its contents. However, a subsequent write should start at the sought position and update the size appropriately.
- Parameter
arg0
(int): no description available
- Returns → None:
no description available
- Parameter
- set_byte_order(self, arg0)#
Sets the byte order to use in this stream.
Automatic conversion will be performed on read and write operations to match the system’s native endianness.
No consistency is guaranteed if this method is called after performing some read and write operations on the system using a different endianness.
- Parameter
arg0
(mitsuba.Stream.EByteOrder
): no description available
- Returns → None:
no description available
- Parameter
- size(self)#
Returns the size of the stream
- Returns → int:
no description available
- skip(self, arg0)#
Skip ahead by a given number of bytes
- Parameter
arg0
(int): no description available
- Returns → None:
no description available
- Parameter
- tell(self)#
Gets the current position inside the stream
- Returns → int:
no description available
- truncate(self, arg0)#
Truncates the stream to a given size.
The position is updated to
min(old_position, size)
. Throws an exception if in read-only mode.- Parameter
arg0
(int): no description available
- Returns → None:
no description available
- Parameter
- write(self, arg0)#
Writes a specified amount of data into the stream. note This does not handle endianness swapping.
Throws an exception when not all data could be written. Implementations need to handle endianness swap when appropriate.
- Parameter
arg0
(bytes): no description available
- Returns → None:
no description available
- Parameter
- write_bool(self, arg0)#
Reads one object of type T from the stream at the current position by delegating to the appropriate
serialization_helper
.Endianness swapping is handled automatically if needed.
- Parameter
arg0
(bool): no description available
- Returns → object:
no description available
- Parameter
- write_double(self, arg0)#
Reads one object of type T from the stream at the current position by delegating to the appropriate
serialization_helper
.Endianness swapping is handled automatically if needed.
- Parameter
arg0
(float): no description available
- Returns → object:
no description available
- Parameter
- write_float(self, arg0)#
Reads one object of type T from the stream at the current position by delegating to the appropriate
serialization_helper
.Endianness swapping is handled automatically if needed.
- Parameter
arg0
(float): no description available
- Returns → object:
no description available
- Parameter
- write_int16(self, arg0)#
Reads one object of type T from the stream at the current position by delegating to the appropriate
serialization_helper
.Endianness swapping is handled automatically if needed.
- Parameter
arg0
(int): no description available
- Returns → object:
no description available
- Parameter
- write_int32(self, arg0)#
Reads one object of type T from the stream at the current position by delegating to the appropriate
serialization_helper
.Endianness swapping is handled automatically if needed.
- Parameter
arg0
(int): no description available
- Returns → object:
no description available
- Parameter
- write_int64(self, arg0)#
Reads one object of type T from the stream at the current position by delegating to the appropriate
serialization_helper
.Endianness swapping is handled automatically if needed.
- Parameter
arg0
(int): no description available
- Returns → object:
no description available
- Parameter
- write_int8(self, arg0)#
Reads one object of type T from the stream at the current position by delegating to the appropriate
serialization_helper
.Endianness swapping is handled automatically if needed.
- Parameter
arg0
(int): no description available
- Returns → object:
no description available
- Parameter
- write_line(self, arg0)#
Convenience function for writing a line of text to an ASCII file
- Parameter
arg0
(str): no description available
- Returns → None:
no description available
- Parameter
- write_single(self, arg0)#
Reads one object of type T from the stream at the current position by delegating to the appropriate
serialization_helper
.Endianness swapping is handled automatically if needed.
- Parameter
arg0
(float): no description available
- Returns → object:
no description available
- Parameter
- write_string(self, arg0)#
Reads one object of type T from the stream at the current position by delegating to the appropriate
serialization_helper
.Endianness swapping is handled automatically if needed.
- Parameter
arg0
(str): no description available
- Returns → object:
no description available
- Parameter
- write_uint16(self, arg0)#
Reads one object of type T from the stream at the current position by delegating to the appropriate
serialization_helper
.Endianness swapping is handled automatically if needed.
- Parameter
arg0
(int): no description available
- Returns → object:
no description available
- Parameter
- write_uint32(self, arg0)#
Reads one object of type T from the stream at the current position by delegating to the appropriate
serialization_helper
.Endianness swapping is handled automatically if needed.
- Parameter
arg0
(int): no description available
- Returns → object:
no description available
- Parameter
- write_uint64(self, arg0)#
Reads one object of type T from the stream at the current position by delegating to the appropriate
serialization_helper
.Endianness swapping is handled automatically if needed.
- Parameter
arg0
(int): no description available
- Returns → object:
no description available
- Parameter
- write_uint8(self, arg0)#
Reads one object of type T from the stream at the current position by delegating to the appropriate
serialization_helper
.Endianness swapping is handled automatically if needed.
- Parameter
arg0
(int): no description available
- Returns → object:
no description available
- Parameter
- class mitsuba.StreamAppender#
Base class:
mitsuba.Appender
%Appender implementation, which writes to an arbitrary C++ output stream
- __init__(self, arg0)#
Create a new stream appender
- Remark:
This constructor is not exposed in the Python bindings
- Parameter
arg0
(str): no description available
- logs_to_file(self)#
Does this appender log to a file
- Returns → bool:
no description available
- read_log(self)#
Return the contents of the log file as a string
- Returns → str:
no description available
- class mitsuba.ZStream#
Base class:
mitsuba.Stream
Transparent compression/decompression stream based on
zlib
.This class transparently decompresses and compresses reads and writes to a nested stream, respectively.
- __init__(self, child_stream, stream_type=<EStreamType., EDeflateStream, level=-1)#
Creates a new compression stream with the given underlying stream. This new instance takes ownership of the child stream. The child stream must outlive the ZStream.
- Parameter
child_stream
(mitsuba.Stream
): no description available
- Parameter
stream_type
(mitsuba.ZStream.EStreamType
): no description available
- Parameter
EDeflateStream
(0>): no description available
- Parameter
level
(int): no description available
- Parameter
- class EStreamType#
Members:
- EDeflateStream#
- EGZipStream#
A raw deflate stream
- __init__(self, value)#
- Parameter
value
(int): no description available
- Parameter
- property EStreamType.name#
- child_stream(self)#
Returns the child stream of this compression stream
- Returns → object:
no description available
- class mitsuba.FileResolver#
Base class:
mitsuba.Object
Simple class for resolving paths on Linux/Windows/Mac OS
This convenience class looks for a file or directory given its name and a set of search paths. The implementation walks through the search paths in order and stops once the file is found.
- __init__(self)#
Initialize a new file resolver with the current working directory
- __init__(self, arg0)#
Copy constructor
- Parameter
arg0
(mitsuba.FileResolver
): no description available
- Parameter
- append(self, arg0)#
Append an entry to the end of the list of search paths
- Parameter
arg0
(mitsuba.filesystem.path
): no description available
- Returns → None:
no description available
- Parameter
- clear(self)#
Clear the list of search paths
- Returns → None:
no description available
- prepend(self, arg0)#
Prepend an entry at the beginning of the list of search paths
- Parameter
arg0
(mitsuba.filesystem.path
): no description available
- Returns → None:
no description available
- Parameter
- resolve(self, arg0)#
Walk through the list of search paths and try to resolve the input path
- Parameter
arg0
(mitsuba.filesystem.path
): no description available
- Returns →
mitsuba.filesystem.path
: no description available
- Parameter
- class mitsuba.Formatter#
Base class:
mitsuba.Object
Abstract interface for converting log information into a human- readable format
- __init__(self)#
- format(self, level, class_, thread, file, line, msg)#
Turn a log message into a human-readable format
- Parameter
level
(mitsuba.LogLevel
): The importance of the debug message
- Parameter
class_
(mitsuba.Class
): Originating class or
nullptr
- Parameter
thread
(mitsuba::Thread): Thread, which is responsible for creating the message
- Parameter
file
(str): File, which is responsible for creating the message
- Parameter
line
(int): Associated line within the source file
- Parameter
msg
(str): Text content associated with the log message
- Returns → str:
no description available
- Parameter
- mitsuba.Log(level, msg)#
- Parameter
level
(mitsuba.LogLevel
): no description available
- Parameter
msg
(str): no description available
- Returns → None:
no description available
- Parameter
- class mitsuba.Loop#
- __call__(self, arg0)#
- Parameter
arg0
(drjit.llvm.ad.Bool): no description available
- Returns → bool:
no description available
- Parameter
- init(self)#
- Returns → None:
no description available
- put(self, arg0)#
- Parameter
arg0
(function): no description available
- Returns → None:
no description available
- Parameter
- set_eval_stride(self, arg0)#
- Parameter
arg0
(int): no description available
- Returns → None:
no description available
- Parameter
- set_max_iterations(self, arg0)#
- Parameter
arg0
(int): no description available
- Returns → None:
no description available
- Parameter
- class mitsuba.MemoryMappedFile#
Base class:
mitsuba.Object
Basic cross-platform abstraction for memory mapped files
- Remark:
The Python API has one additional constructor <tt>MemoryMappedFile(filename, array)<tt>, which creates a new file, maps it into memory, and copies the array contents.
- __init__(self, filename, size)#
Create a new memory-mapped file of the specified size
- Parameter
filename
(mitsuba.filesystem.path
): no description available
- Parameter
size
(int): no description available
- Parameter
- __init__(self, filename, write=False)#
Map the specified file into memory
- Parameter
filename
(mitsuba.filesystem.path
): no description available
- Parameter
write
(bool): no description available
- Parameter
- __init__(self, filename, array)#
- Parameter
filename
(mitsuba.filesystem.path
): no description available
- Parameter
array
(numpy.ndarray): no description available
- Parameter
- can_write(self)#
Return whether the mapped memory region can be modified
- Returns → bool:
no description available
- create_temporary(arg0)#
Create a temporary memory-mapped file
- Remark:
When closing the mapping, the file is automatically deleted. Mitsuba additionally informs the OS that any outstanding changes that haven’t yet been written to disk can be discarded (Linux/OSX only).
- Parameter
arg0
(int): no description available
- Returns →
mitsuba.MemoryMappedFile
: no description available
- data(self)#
Return a pointer to the file contents in memory
- Returns → capsule:
no description available
- filename(self)#
Return the associated filename
- Returns →
mitsuba.filesystem.path
: no description available
- Returns →
- resize(self, arg0)#
Resize the memory-mapped file
This involves remapping the file, which will generally change the pointer obtained via data()
- Parameter
arg0
(int): no description available
- Returns → None:
no description available
- Parameter
- size(self)#
Return the size of the mapped region
- Returns → int:
no description available
- class mitsuba.ParamFlags#
This list of flags is used to classify the different types of parameters exposed by the plugins.
For instance, in the context of differentiable rendering, it is important to know which parameters can be differentiated, and which of those might introduce discontinuities in the Monte Carlo simulation.
Members:
- Differentiable#
Tracking gradients w.r.t. this parameter is allowed
- NonDifferentiable#
Tracking gradients w.r.t. this parameter is not allowed
- Discontinuous#
Tracking gradients w.r.t. this parameter will introduce discontinuities
- __init__(self, value)#
- Parameter
value
(int): no description available
- Parameter
- property name#
- class mitsuba.PluginManager#
The object factory is responsible for loading plugin modules and instantiating object instances.
Ordinarily, this class will be used by making repeated calls to the create_object() methods. The generated instances are then assembled into a final object graph, such as a scene. One such examples is the SceneHandler class, which parses an XML scene file by essentially translating the XML elements into calls to create_object().
- create_object(self, arg0)#
Instantiate a plugin, verify its type, and return the newly created object instance.
- Parameter
props
: A Properties instance containing all information required to find and construct the plugin.
- Parameter
class_type
: Expected type of the instance. An exception will be thrown if it turns out not to derive from this class.
- Parameter
arg0
(mitsuba::Properties): no description available
- Returns → object:
no description available
- Parameter
- get_plugin_class(self, name, variant)#
Return the class corresponding to a plugin for a specific variant
- Parameter
name
(str): no description available
- Parameter
variant
(str): no description available
- Returns →
mitsuba.Class
: no description available
- Parameter
- instance()#
Return the global plugin manager
- Returns →
mitsuba.PluginManager
: no description available
- Returns →
- class mitsuba.ScopedSetThreadEnvironment#
RAII-style class to temporarily switch to another thread’s logger/file resolver
- __init__(self, arg0)#
- Parameter
arg0
(mitsuba.ThreadEnvironment
): no description available
- Parameter
- class mitsuba.Spiral#
Base class:
mitsuba.Object
Generates a spiral of blocks to be rendered.
- Author:
Adam Arbree Aug 25, 2005 RayTracer.java Used with permission. Copyright 2005 Program of Computer Graphics, Cornell University
- __init__(self, size, block_size=32, passes=1)#
Create a new spiral generator for the given size, offset into a larger frame, and block size
- Parameter
size
(mitsuba.Vector
): no description available
- Parameter
block_size
(int): no description available
- Parameter
passes
(int): no description available
- Parameter
- block_count(self)#
Return the total number of blocks
- Returns → int:
no description available
- max_block_size(self)#
Return the maximum block size
- Returns → int:
no description available
- next_block(self)#
Return the offset, size, and unique identifier of the next block.
A size of zero indicates that the spiral traversal is done.
- Returns → Tuple[
mitsuba.Vector
, int]: no description available
- Returns → Tuple[
- reset(self)#
Reset the spiral to its initial state. Does not affect the number of passes.
- Returns → None:
no description available
- class mitsuba.Struct#
Base class:
mitsuba.Object
Descriptor for specifying the contents and in-memory layout of a POD- style data record
- Remark:
The python API provides an additional
dtype()
method, which returns the NumPydtype
equivalent of a givenStruct
instance.
- __init__(self, pack=False, byte_order=<ByteOrder., HostByteOrder)#
Create a new
Struct
and indicate whether the contents are packed or aligned- Parameter
pack
(bool): no description available
- Parameter
byte_order
(mitsuba.Struct.ByteOrder
): no description available
- Parameter
HostByteOrder
(2>): no description available
- Parameter
- class ByteOrder#
Members:
LittleEndian :
BigEndian :
HostByteOrder :
- __init__(self, value)#
- Parameter
value
(int): no description available
- Parameter
- property ByteOrder.name#
- class Field#
Field specifier with size and offset
- property Field.blend#
For use with StructConverter::convert()
Specifies a pair of weights and source field names that will be linearly blended to obtain the output field value. Note that this only works for floating point fields or integer fields with the Flags::Normalized flag. Gamma-corrected fields will be blended in linear space.
- property Field.flags#
Additional flags
- Field.is_float(self)#
- Returns → bool:
no description available
- Field.is_integer(self)#
- Returns → bool:
no description available
- Field.is_signed(self)#
- Returns → bool:
no description available
- Field.is_unsigned(self)#
- Returns → bool:
no description available
- property Field.name#
Name of the field
- property Field.offset#
Offset within the
Struct
(in bytes)
- Field.range(self)#
- Returns → Tuple[float, float]:
no description available
- property Field.size#
Size in bytes
- property Field.type#
Type identifier
- class Flags#
Members:
- Empty#
No flags set (default value)
- Normalized#
Specifies whether an integer field encodes a normalized value in the range [0, 1]. The flag is ignored if specified for floating point valued fields.
- Gamma#
Specifies whether the field encodes a sRGB gamma-corrected value. Assumes
Normalized
is also specified.
- Weight#
In FieldConverter::convert, when an input structure contains a weight field, the value of all entries are considered to be expressed relative to its value. Converting to an un-weighted structure entails a division by the weight.
- Assert#
In FieldConverter::convert, check that the field value matches the specified default value. Otherwise, return a failure
- Alpha#
Specifies whether the field encodes an alpha value
- PremultipliedAlpha#
Specifies whether the field encodes an alpha premultiplied value
- Default#
In FieldConverter::convert, when the field is missing in the source record, replace it by the specified default value
- __init__(self, value)#
- Parameter
value
(int): no description available
- Parameter
- property Flags.name#
- class Type#
Members:
Int8 :
UInt8 :
Int16 :
UInt16 :
Int32 :
UInt32 :
Int64 :
UInt64 :
Float16 :
Float32 :
Float64 :
Invalid :
- __init__(self, value)#
- Parameter
value
(int): no description available
- Parameter
- __init__(self, dtype)#
- Parameter
dtype
(dtype): no description available
- Parameter
- property Type.name#
- alignment(self)#
Return the alignment (in bytes) of the data structure
- Returns → int:
no description available
- append(self, name, type, flags=<Flags., Empty, default=0.0)#
Append a new field to the
Struct
; determines size and offset automatically- Parameter
name
(str): no description available
- Parameter
type
(mitsuba.Struct.Type
): no description available
- Parameter
flags
(int): no description available
- Parameter
Empty
(0>): no description available
- Parameter
default
(float): no description available
- Returns →
mitsuba.Struct
: no description available
- Parameter
- byte_order(self)#
Return the byte order of the
Struct
- Returns →
mitsuba.Struct.ByteOrder
: no description available
- Returns →
- dtype(self)#
Return a NumPy dtype corresponding to this data structure
- Returns → dtype:
no description available
- field(self, arg0)#
Look up a field by name (throws an exception if not found)
- Parameter
arg0
(str): no description available
- Returns →
mitsuba.Struct.Field
: no description available
- Parameter
- field_count(self)#
Return the number of fields
- Returns → int:
no description available
- has_field(self, arg0)#
Check if the
Struct
has a field of the specified name- Parameter
arg0
(str): no description available
- Returns → bool:
no description available
- Parameter
- is_float(arg0)#
Check whether the given type is a floating point type
- Parameter
arg0
(mitsuba.Struct.Type
): no description available
- Returns → bool:
no description available
- Parameter
- is_integer(arg0)#
Check whether the given type is an integer type
- Parameter
arg0
(mitsuba.Struct.Type
): no description available
- Returns → bool:
no description available
- Parameter
- is_signed(arg0)#
Check whether the given type is a signed type
- Parameter
arg0
(mitsuba.Struct.Type
): no description available
- Returns → bool:
no description available
- Parameter
- is_unsigned(arg0)#
Check whether the given type is an unsigned type
- Parameter
arg0
(mitsuba.Struct.Type
): no description available
- Returns → bool:
no description available
- Parameter
- range(arg0)#
Return the representable range of the given type
- Parameter
arg0
(mitsuba.Struct.Type
): no description available
- Returns → Tuple[float, float]:
no description available
- Parameter
- size(self)#
Return the size (in bytes) of the data structure, including padding
- Returns → int:
no description available
- class mitsuba.StructConverter#
Base class:
mitsuba.Object
This class solves the any-to-any problem: efficiently converting from one kind of structured data representation to another
Graphics applications often need to convert from one kind of structured representation to another, for instance when loading/saving image or mesh data. Consider the following data records which both describe positions tagged with color data.
struct Source { // <-- Big endian! :( uint8_t r, g, b; // in sRGB half x, y, z; }; struct Target { // <-- Little endian! float x, y, z; float r, g, b, a; // in linear space };
The record
Source
may represent what is stored in a file on disk, whileTarget
represents the expected input of the implementation. Not only are the formats (e.g. float vs half or uint8_t, incompatible endianness) and encodings different (e.g. gamma correction vs linear space), but the second record even has a different order and extra fields that don’t exist in the first one.This class provides a routine convert() which <ol>
reorders entries
converts between many different formats (u[int]8-64, float16-64)
performs endianness conversion
applies or removes gamma correction
optionally checks that certain entries have expected default values
substitutes missing values with specified defaults
performs linear transformations of groups of fields (e.g. between
different RGB color spaces)
applies dithering to avoid banding artifacts when converting 2D
images
</ol>
The above operations can be arranged in countless ways, which makes it hard to provide an efficient generic implementation of this functionality. For this reason, the implementation of this class relies on a JIT compiler that generates fast conversion code on demand for each specific conversion. The function is cached and reused in case the same conversion is needed later on. Note that JIT compilation only works on x86_64 processors; other platforms use a slow generic fallback implementation.
- __init__(self, source, target, dither=False)#
- Parameter
source
(mitsuba.Struct
): no description available
- Parameter
target
(mitsuba.Struct
): no description available
- Parameter
dither
(bool): no description available
- Parameter
- convert(self, arg0)#
- Parameter
arg0
(bytes): no description available
- Returns → bytes:
no description available
- Parameter
- source(self)#
Return the source
Struct
descriptor- Returns →
mitsuba.Struct
: no description available
- Returns →
- target(self)#
Return the target
Struct
descriptor- Returns →
mitsuba.Struct
: no description available
- Returns →
- class mitsuba.Thread#
Base class:
mitsuba.Object
Cross-platform thread implementation
Mitsuba threads are internally implemented via the
std::thread
class defined in C++11. This wrapper class is needed to attach additional state (Loggers, Path resolvers, etc.) that is inherited when a thread launches another thread.- __init__(self, name)#
- Parameter
name
(str): no description available
- Parameter
- class EPriority#
Possible priority values for Thread::set_priority()
Members:
- EIdlePriority#
- ELowestPriority#
- ELowPriority#
- ENormalPriority#
- EHighPriority#
- EHighestPriority#
- ERealtimePriority#
- __init__(self, value)#
- Parameter
value
(int): no description available
- Parameter
- property EPriority.name#
- core_affinity(self)#
Return the core affinity
- Returns → int:
no description available
- detach(self)#
Detach the thread and release resources
After a call to this function, join() cannot be used anymore. This releases resources, which would otherwise be held until a call to join().
- Returns → None:
no description available
- file_resolver(self)#
Return the file resolver associated with the current thread
- Returns →
mitsuba.FileResolver
: no description available
- Returns →
- is_critical(self)#
Return the value of the critical flag
- Returns → bool:
no description available
- is_running(self)#
Is this thread still running?
- Returns → bool:
no description available
- join(self)#
Wait until the thread finishes
- Returns → None:
no description available
- logger(self)#
Return the thread’s logger instance
- Returns →
mitsuba.Logger
: no description available
- Returns →
- name(self)#
Return the name of this thread
- Returns → str:
no description available
- parent(self)#
Return the parent thread
- Returns →
mitsuba.Thread
: no description available
- Returns →
- priority(self)#
Return the thread priority
- Returns →
mitsuba.Thread.EPriority
: no description available
- Returns →
- register_external_thread(arg0)#
Register a new thread (e.g. Dr.Jit, Python) with Mitsuba thread system. Returns true upon success.
- Parameter
arg0
(str): no description available
- Returns → bool:
no description available
- Parameter
- set_core_affinity(self, arg0)#
Set the core affinity
This function provides a hint to the operating system scheduler that the thread should preferably run on the specified processor core. By default, the parameter is set to -1, which means that there is no affinity.
- Parameter
arg0
(int): no description available
- Returns → None:
no description available
- Parameter
- set_critical(self, arg0)#
Specify whether or not this thread is critical
When an thread marked critical crashes from an uncaught exception, the whole process is brought down. The default is
False
.- Parameter
arg0
(bool): no description available
- Returns → None:
no description available
- Parameter
- set_file_resolver(self, arg0)#
Set the file resolver associated with the current thread
- Parameter
arg0
(mitsuba.FileResolver
): no description available
- Returns → None:
no description available
- Parameter
- set_logger(self, arg0)#
Set the logger instance used to process log messages from this thread
- Parameter
arg0
(mitsuba.Logger
): no description available
- Returns → None:
no description available
- Parameter
- set_name(self, arg0)#
Set the name of this thread
- Parameter
arg0
(str): no description available
- Returns → None:
no description available
- Parameter
- set_priority(self, arg0)#
Set the thread priority
This does not always work – for instance, Linux requires root privileges for this operation.
- Parameter
arg0
(mitsuba.Thread.EPriority
): no description available
- Returns → bool:
True
upon success.
- Parameter
- sleep(arg0)#
Sleep for a certain amount of time (in milliseconds)
- Parameter
arg0
(int): no description available
- Returns → None:
no description available
- Parameter
- start(self)#
Start the thread
- Returns → None:
no description available
- thread()#
Return the current thread
- Returns →
mitsuba.Thread
: no description available
- Returns →
- thread_id()#
Return a unique ID that is associated with this thread
- Returns → int:
no description available
- wait_for_tasks()#
Wait for previously registered nanothread tasks to complete
- Returns → None:
no description available
- class mitsuba.ThreadEnvironment#
Captures a thread environment (logger and file resolver). Used with ScopedSetThreadEnvironment
- __init__(self)#
- class mitsuba.Timer#
- begin_stage(self, arg0)#
- Parameter
arg0
(str): no description available
- Returns → None:
no description available
- Parameter
- end_stage(self, arg0)#
- Parameter
arg0
(str): no description available
- Returns → None:
no description available
- Parameter
- reset(self)#
- Returns → int:
no description available
- value(self)#
- Returns → int:
no description available
- mitsuba.filesystem.absolute(arg0)#
Returns an absolute path to the same location pointed by
p
, relative tobase
.- See also:
http ://en.cppreference.com/w/cpp/experimental/fs/absolute)
- Parameter
arg0
(mitsuba.filesystem.path
): no description available
- Returns →
mitsuba.filesystem.path
: no description available
- mitsuba.filesystem.create_directory(arg0)#
Creates a directory at
p
as ifmkdir
was used. Returns true if directory creation was successful, false otherwise. Ifp
already exists and is already a directory, the function does nothing (this condition is not treated as an error).- Parameter
arg0
(mitsuba.filesystem.path
): no description available
- Returns → bool:
no description available
- Parameter
- mitsuba.filesystem.current_path()#
Returns the current working directory (equivalent to getcwd)
- Returns →
mitsuba.filesystem.path
: no description available
- Returns →
- mitsuba.filesystem.equivalent(arg0, arg1)#
Checks whether two paths refer to the same file system object. Both must refer to an existing file or directory. Symlinks are followed to determine equivalence.
- Parameter
arg0
(mitsuba.filesystem.path
): no description available
- Parameter
arg1
(mitsuba.filesystem.path
): no description available
- Returns → bool:
no description available
- Parameter
- mitsuba.filesystem.exists(arg0)#
Checks if
p
points to an existing filesystem object.- Parameter
arg0
(mitsuba.filesystem.path
): no description available
- Returns → bool:
no description available
- Parameter
- mitsuba.filesystem.file_size(arg0)#
Returns the size (in bytes) of a regular file at
p
. Attempting to determine the size of a directory (as well as any other file that is not a regular file or a symlink) is treated as an error.- Parameter
arg0
(mitsuba.filesystem.path
): no description available
- Returns → int:
no description available
- Parameter
- mitsuba.filesystem.is_directory(arg0)#
Checks if
p
points to a directory.- Parameter
arg0
(mitsuba.filesystem.path
): no description available
- Returns → bool:
no description available
- Parameter
- mitsuba.filesystem.is_regular_file(arg0)#
Checks if
p
points to a regular file, as opposed to a directory or symlink.- Parameter
arg0
(mitsuba.filesystem.path
): no description available
- Returns → bool:
no description available
- Parameter
- class mitsuba.filesystem.path#
Represents a path to a filesystem resource. On construction, the path is parsed and stored in a system-agnostic representation. The path can be converted back to the system-specific string using
native()
orstring()
.- __init__(self)#
Default constructor. Constructs an empty path. An empty path is considered relative.
- __init__(self, arg0)#
Copy constructor.
- Parameter
arg0
(mitsuba.filesystem.path
): no description available
- Parameter
- __init__(self, arg0)#
Construct a path from a string with native type. On Windows, the path can use both ‘/’ or ‘\’ as a delimiter.
- Parameter
arg0
(str): no description available
- Parameter
- clear(self)#
Makes the path an empty path. An empty path is considered relative.
- Returns → None:
no description available
- empty(self)#
Checks if the path is empty
- Returns → bool:
no description available
- extension(self)#
Returns the extension of the filename component of the path (the substring starting at the rightmost period, including the period). Special paths ‘.’ and ‘..’ have an empty extension.
- Returns →
mitsuba.filesystem.path
: no description available
- Returns →
- filename(self)#
Returns the filename component of the path, including the extension.
- Returns →
mitsuba.filesystem.path
: no description available
- Returns →
- is_absolute(self)#
Checks if the path is absolute.
- Returns → bool:
no description available
- is_relative(self)#
Checks if the path is relative.
- Returns → bool:
no description available
- native(self)#
Returns the path in the form of a native string, so that it can be passed directly to system APIs. The path is constructed using the system’s preferred separator and the native string type.
- Returns → str:
no description available
- parent_path(self)#
Returns the path to the parent directory. Returns an empty path if it is already empty or if it has only one element.
- Returns →
mitsuba.filesystem.path
: no description available
- Returns →
- replace_extension(self, arg0)#
Replaces the substring starting at the rightmost ‘.’ symbol by the provided string.
A ‘.’ symbol is automatically inserted if the replacement does not start with a dot. Removes the extension altogether if the empty path is passed. If there is no extension, appends a ‘.’ followed by the replacement. If the path is empty, ‘.’ or ‘..’, the method does nothing.
Returns *this.
- Parameter
arg0
(mitsuba.filesystem.path
): no description available
- Returns →
mitsuba.filesystem.path
: no description available
- Parameter
- mitsuba.filesystem.preferred_separator: str = /#
- mitsuba.filesystem.remove(arg0)#
Removes a file or empty directory. Returns true if removal was successful, false if there was an error (e.g. the file did not exist).
- Parameter
arg0
(mitsuba.filesystem.path
): no description available
- Returns → bool:
no description available
- Parameter
- mitsuba.filesystem.resize_file(arg0, arg1)#
Changes the size of the regular file named by
p
as iftruncate
was called. If the file was larger thantarget_length
, the remainder is discarded. The file must exist.- Parameter
arg0
(mitsuba.filesystem.path
): no description available
- Parameter
arg1
(int): no description available
- Returns → bool:
no description available
- Parameter
- mitsuba.has_flag(overloaded)#
- has_flag(arg0, arg1)#
- Parameter
arg0
(int): no description available
- Parameter
arg1
(mitsuba.EmitterFlags
): no description available
- Returns → bool:
no description available
- Parameter
- has_flag(arg0, arg1)#
- Parameter
arg0
(drjit.llvm.ad.UInt): no description available
- Parameter
arg1
(mitsuba.EmitterFlags
): no description available
- Returns → drjit.llvm.ad.Bool:
no description available
- Parameter
- has_flag(arg0, arg1)#
- Parameter
arg0
(int): no description available
- Parameter
arg1
(mitsuba.RayFlags
): no description available
- Returns → bool:
no description available
- Parameter
- has_flag(arg0, arg1)#
- Parameter
arg0
(drjit.llvm.ad.UInt): no description available
- Parameter
arg1
(mitsuba.RayFlags
): no description available
- Returns → drjit.llvm.ad.Bool:
no description available
- Parameter
- has_flag(arg0, arg1)#
- Parameter
arg0
(int): no description available
- Parameter
arg1
(mitsuba.BSDFFlags
): no description available
- Returns → bool:
no description available
- Parameter
- has_flag(arg0, arg1)#
- Parameter
arg0
(drjit.llvm.ad.UInt): no description available
- Parameter
arg1
(mitsuba.BSDFFlags
): no description available
- Returns → drjit.llvm.ad.Bool:
no description available
- Parameter
- has_flag(arg0, arg1)#
- Parameter
arg0
(int): no description available
- Parameter
arg1
(mitsuba.FilmFlags
): no description available
- Returns → bool:
no description available
- Parameter
- has_flag(arg0, arg1)#
- Parameter
arg0
(drjit.llvm.ad.UInt): no description available
- Parameter
arg1
(mitsuba.FilmFlags
): no description available
- Returns → drjit.llvm.ad.Bool:
no description available
- Parameter
- has_flag(arg0, arg1)#
has_flag(arg0: drjit.llvm.ad.UInt, arg1:
mitsuba.PhaseFunctionFlags
) -> drjit.llvm.ad.Bool
- Parameter
arg0
(int): no description available
- Parameter
arg1
(mitsuba.PhaseFunctionFlags
): no description available
- Returns → bool:
no description available
- mitsuba.register_bsdf(arg0, arg1)#
- Parameter
arg0
(str): no description available
- Parameter
arg1
(Callable[[mitsuba.Properties
], object]): no description available
- Returns → None:
no description available
- Parameter
- mitsuba.register_emitter(arg0, arg1)#
- Parameter
arg0
(str): no description available
- Parameter
arg1
(Callable[[mitsuba.Properties
], object]): no description available
- Returns → None:
no description available
- Parameter
- mitsuba.register_film(arg0, arg1)#
- Parameter
arg0
(str): no description available
- Parameter
arg1
(Callable[[mitsuba.Properties
], object]): no description available
- Returns → None:
no description available
- Parameter
- mitsuba.register_integrator(arg0, arg1)#
- Parameter
arg0
(str): no description available
- Parameter
arg1
(Callable[[mitsuba.Properties
], object]): no description available
- Returns → None:
no description available
- Parameter
- mitsuba.register_medium(arg0, arg1)#
- Parameter
arg0
(str): no description available
- Parameter
arg1
(Callable[[mitsuba.Properties
], object]): no description available
- Returns → None:
no description available
- Parameter
- mitsuba.register_mesh(arg0, arg1)#
- Parameter
arg0
(str): no description available
- Parameter
arg1
(Callable[[mitsuba.Properties
], object]): no description available
- Returns → None:
no description available
- Parameter
- mitsuba.register_phasefunction(arg0, arg1)#
- Parameter
arg0
(str): no description available
- Parameter
arg1
(Callable[[mitsuba.Properties
], object]): no description available
- Returns → None:
no description available
- Parameter
- mitsuba.register_sampler(arg0, arg1)#
- Parameter
arg0
(str): no description available
- Parameter
arg1
(Callable[[mitsuba.Properties
], object]): no description available
- Returns → None:
no description available
- Parameter
- mitsuba.register_sensor(overloaded)#
- register_sensor(arg0, arg1)#
- Parameter
arg0
(str): no description available
- Parameter
arg1
(Callable[[mitsuba.Properties
], object]): no description available
- Parameter
- register_sensor(arg0, arg1)#
- Parameter
arg0
(str): no description available
- Parameter
arg1
(Callable[[mitsuba.Properties
], object]): no description available
- Parameter
- mitsuba.register_texture(arg0, arg1)#
- Parameter
arg0
(str): no description available
- Parameter
arg1
(Callable[[mitsuba.Properties
], object]): no description available
- Returns → None:
no description available
- Parameter
- mitsuba.register_volume(arg0, arg1)#
- Parameter
arg0
(str): no description available
- Parameter
arg1
(Callable[[mitsuba.Properties
], object]): no description available
- Returns → None:
no description available
- Parameter
- class mitsuba.TraversalCallback#
Abstract class providing an interface for traversing scene graphs
This interface can be implemented either in C++ or in Python, to be used in conjunction with Object::traverse() to traverse a scene graph. Mitsuba currently uses this mechanism to determine a scene’s differentiable parameters.
- __init__(self)#
- put_object(self, name, obj, flags)#
Inform the traversal callback that the instance references another Mitsuba object
- Parameter
name
(str): no description available
- Parameter
obj
(mitsuba::Object): no description available
- Parameter
flags
(int): no description available
- Returns → None:
no description available
- Parameter
- put_parameter(self, name, value, flags)#
Inform the traversal callback about an attribute of an instance
- Parameter
name
(str): no description available
- Parameter
value
(object): no description available
- Parameter
flags
(mitsuba.ParamFlags
): no description available
- Returns → None:
no description available
- Parameter
Parsing#
- mitsuba.load_dict(dict, parallel=True)#
Load a Mitsuba scene or object from an Python dictionary
- Parameter
dict
(dict): Python dictionary containing the object description
- Parameter
parallel
(bool): Whether the loading should be executed on multiple threads in parallel
- Returns → object:
no description available
- Parameter
- mitsuba.load_file(path, update_scene=False, parallel=True, **kwargs)#
Load a Mitsuba scene from an XML file
- Parameter
path
(str): Filename of the scene XML file
- Parameter
parameters
: Optional list of parameters that can be referenced as
$varname
in the scene.- Parameter
variant
: Specifies the variant of plugins to instantiate (e.g. “scalar_rgb”)
- Parameter
update_scene
(bool): When Mitsuba updates scene to a newer version, should the updated XML file be written back to disk?
- Parameter
parallel
(bool): Whether the loading should be executed on multiple threads in parallel
- Returns → object:
no description available
- Parameter
- mitsuba.load_string(string, parallel=True, **kwargs)#
Load a Mitsuba scene from an XML string
- Parameter
string
(str): no description available
- Parameter
parallel
(bool): no description available
- Returns → object:
no description available
- Parameter
- mitsuba.xml.dict_to_xml()#
Converts a Mitsuba dictionary into its XML representation.
- Parameter
scene_dict
: Mitsuba dictionary
- Parameter
filename
: Output filename
- Parameter
split_files
: Whether to split the scene into multiple files (default: False)
- Parameter
- mitsuba.xml_to_props(path)#
Get the names and properties of the objects described in a Mitsuba XML file
- Parameter
path
(str): no description available
- Returns → List[Tuple[str,
mitsuba.Properties
]]: no description available
- Parameter
Object#
- class mitsuba.Object#
Object base class with builtin reference counting
This class (in conjunction with the
ref
reference counter) constitutes the foundation of an efficient reference-counted object hierarchy. The implementation here is an alternative to standard mechanisms for reference counting such asstd::shared_ptr
from the STL.Why not simply use
std::shared_ptr
? To be spec-compliant, such shared pointers must associate a special record with every instance, which stores at least two counters plus a deletion function. Allocating this record naturally incurs further overheads to maintain data structures within the memory allocator. In addition to this, the size of an individualshared_ptr
references is at least two data words. All of this quickly adds up and leads to significant overheads for large collections of instances, hence the need for an alternative in Mitsuba.In contrast, the
Object
class allows for a highly efficient implementation that only adds 32 bits to the base object (for the counter) and has no overhead for references.- __init__(self)#
Default constructor
- __init__(self, arg0)#
Copy constructor
- Parameter
arg0
(mitsuba.Object
): no description available
- Parameter
- class_(self)#
Return a Class instance containing run-time type information about this Object
- See also:
Class
- Returns →
mitsuba.Class
: no description available
- dec_ref(self, dealloc=True)#
Decrease the reference count of the object and possibly deallocate it.
The object will automatically be deallocated once the reference count reaches zero.
- Parameter
dealloc
(bool): no description available
- Returns → None:
no description available
- Parameter
- expand(self)#
Expand the object into a list of sub-objects and return them
In some cases, an Object instance is merely a container for a number of sub-objects. In the context of Mitsuba, an example would be a combined sun & sky emitter instantiated via XML, which recursively expands into a separate sun & sky instance. This functionality is supported by any Mitsuba object, hence it is located this level.
- Returns → list:
no description available
- id(self)#
Return an identifier of the current instance (if available)
- Returns → str:
no description available
- inc_ref(self)#
Increase the object’s reference count by one
- Returns → None:
no description available
- parameters_changed(self, keys=[])#
Update internal state after applying changes to parameters
This function should be invoked when attributes (obtained via traverse) are modified in some way. The object can then update its internal state so that derived quantities are consistent with the change.
- Parameter
keys
(List[str]): Optional list of names (obtained via traverse) corresponding to the attributes that have been modified. Can also be used to notify when this function is called from a parent object by adding a “parent” key to the list. When empty, the object should assume that any attribute might have changed.
- Remark:
The default implementation does nothing.
- See also:
TraversalCallback
- Returns → None:
no description available
- Parameter
- ref_count(self)#
Return the current reference count
- Returns → int:
no description available
- set_id(self, id)#
Set an identifier to the current instance (if applicable)
- Parameter
id
(str): no description available
- Returns → None:
no description available
- Parameter
- traverse(self, cb)#
Traverse the attributes and object graph of this instance
Implementing this function enables recursive traversal of C++ scene graphs. It is e.g. used to determine the set of differentiable parameters when using Mitsuba for optimization.
- Remark:
The default implementation does nothing.
- See also:
TraversalCallback
- Parameter
cb
(mitsuba.TraversalCallback
): no description available
- Returns → None:
no description available
- class mitsuba.ObjectPtr#
- __init__(self)#
- __init__(self, arg0)#
- Parameter
arg0
(mitsuba.Object
): no description available
- Parameter
- assign(self, arg0)#
- Parameter
arg0
(mitsuba.ObjectPtr
): no description available
- Returns → None:
no description available
- Parameter
- entry_(self, arg0)#
- Parameter
arg0
(int): no description available
- Returns →
mitsuba.Object
: no description available
- Parameter
- eq_(self, arg0)#
- Parameter
arg0
(mitsuba.ObjectPtr
): no description available
- Returns → drjit.llvm.ad.Bool:
no description available
- Parameter
- gather_(source, index, mask, permute=False)#
- Parameter
source
(mitsuba.ObjectPtr
): no description available
- Parameter
index
(drjit.llvm.ad.UInt): no description available
- Parameter
mask
(drjit.llvm.ad.Bool): no description available
- Parameter
permute
(bool): no description available
- Returns →
mitsuba.ObjectPtr
: no description available
- Parameter
- label_(self)#
- Returns → str:
no description available
- neq_(self, arg0)#
- Parameter
arg0
(mitsuba.ObjectPtr
): no description available
- Returns → drjit.llvm.ad.Bool:
no description available
- Parameter
- registry_get_max_()#
- Returns → int:
no description available
- registry_get_ptr_(arg0)#
- Parameter
arg0
(int): no description available
- Returns → object:
no description available
- Parameter
- reinterpret_array_(arg0)#
- Parameter
arg0
(drjit.llvm.ad.UInt): no description available
- Returns →
mitsuba.ObjectPtr
: no description available
- Parameter
- scatter_(self, target, index, mask, permute=False)#
- Parameter
target
(mitsuba.ObjectPtr
): no description available
- Parameter
index
(drjit.llvm.ad.UInt): no description available
- Parameter
mask
(drjit.llvm.ad.Bool): no description available
- Parameter
permute
(bool): no description available
- Returns → None:
no description available
- Parameter
- select_(arg0, arg1, arg2)#
- Parameter
arg0
(drjit.llvm.ad.Bool): no description available
- Parameter
arg1
(mitsuba.ObjectPtr
): no description available
- Parameter
arg2
(mitsuba.ObjectPtr
): no description available
- Returns →
mitsuba.ObjectPtr
: no description available
- Parameter
- set_index_(self, arg0)#
- Parameter
arg0
(int): no description available
- Returns → None:
no description available
- Parameter
- set_label_(self, arg0)#
- Parameter
arg0
(str): no description available
- Returns → None:
no description available
- Parameter
- zero_()#
(arg0: int) ->
mitsuba.llvm_ad_rgb.ObjectPtr
- class mitsuba.Class#
Stores meta-information about Object instances.
This class provides a thin layer of RTTI (run-time type information), which is useful for doing things like:
Checking if an object derives from a certain class
Determining the parent of a class at runtime
Instantiating a class by name
Unserializing a class from a binary data stream
- See also:
ref, Object
- alias(self)#
Return the scene description-specific alias, if applicable
- Returns → str:
no description available
- name(self)#
Return the name of the class
- Returns → str:
no description available
- parent(self)#
Return the Class object associated with the parent class of nullptr if it does not have one.
- Returns →
mitsuba.Class
: no description available
- Returns →
- variant(self)#
Return the variant of the class
- Returns → str:
no description available
Properties#
- class mitsuba.Properties#
Associative parameter map for constructing subclasses of Object.
Note that the Python bindings for this class do not implement the various type-dependent getters and setters. Instead, they are accessed just like a normal Python map, e.g:
myProps = mitsuba.core.Properties("plugin_name") myProps["stringProperty"] = "hello" myProps["spectrumProperty"] = mitsuba.core.Spectrum(1.0)
or using the
get(key, default)
method.- __init__(self)#
Construct an empty property container
- __init__(self, arg0)#
Construct an empty property container with a specific plugin name
- Parameter
arg0
(str): no description available
- Parameter
- __init__(self, arg0)#
Copy constructor
- Parameter
arg0
(mitsuba.Properties
): no description available
- Parameter
- class Type#
Members:
Bool
Long
Float
Array3f
Transform3f
Transform4f
TensorHandle
Color
String
NamedReference
Object
Pointer
- __init__(self, value)#
- Parameter
value
(int): no description available
- Parameter
- property Type.name#
- as_string(self, arg0)#
Return one of the parameters (converting it to a string if necessary)
- Parameter
arg0
(str): no description available
- Returns → str:
no description available
- Parameter
- copy_attribute(self, arg0, arg1, arg2)#
Copy a single attribute from another Properties object and potentially rename it
- Parameter
arg0
(mitsuba.Properties
): no description available
- Parameter
arg1
(str): no description available
- Parameter
arg2
(str): no description available
- Returns → None:
no description available
- Parameter
- get(self, key, def_value=None)#
Return the value for the specified key it exists, otherwise return default value
- Parameter
key
(str): no description available
- Parameter
def_value
(object): no description available
- Returns → object:
no description available
- Parameter
- has_property(self, arg0)#
Verify if a value with the specified name exists
- Parameter
arg0
(str): no description available
- Returns → bool:
no description available
- Parameter
- id(self)#
Returns a unique identifier associated with this instance (or an empty string)
- Returns → str:
no description available
- mark_queried(self, arg0)#
Manually mark a certain property as queried
- Parameter
arg0
(str): no description available
- Returns → bool:
True
upon success
- Parameter
- merge(self, arg0)#
Merge another properties record into the current one.
Existing properties will be overwritten with the values from
props
if they have the same name.- Parameter
arg0
(mitsuba.Properties
): no description available
- Returns → None:
no description available
- Parameter
- named_references(self)#
- Returns → List[Tuple[str, str]]:
no description available
- plugin_name(self)#
Get the associated plugin name
- Returns → str:
no description available
- property_names(self)#
Return an array containing the names of all stored properties
- Returns → List[str]:
no description available
- remove_property(self, arg0)#
Remove a property with the specified name
- Parameter
arg0
(str): no description available
- Returns → bool:
True
upon success
- Parameter
- set_id(self, arg0)#
Set the unique identifier associated with this instance
- Parameter
arg0
(str): no description available
- Returns → None:
no description available
- Parameter
- set_plugin_name(self, arg0)#
Set the associated plugin name
- Parameter
arg0
(str): no description available
- Returns → None:
no description available
- Parameter
- string(self, arg0, arg1)#
Retrieve a string value (use default value if no entry exists)
- Parameter
arg0
(str): no description available
- Parameter
arg1
(str): no description available
- Returns → object:
no description available
- Parameter
- type(self, arg0)#
Returns the type of an existing property. If no property exists under that name, an error is logged and type
void
is returned.- Parameter
arg0
(str): no description available
- Returns → mitsuba::Properties::Type:
no description available
- Parameter
- unqueried(self)#
Return the list of un-queried attributed
- Returns → List[str]:
no description available
- was_queried(self, arg0)#
Check if a certain property was queried
- Parameter
arg0
(str): no description available
- Returns → bool:
no description available
- Parameter
Bitmap#
- class mitsuba.Bitmap#
Base class:
mitsuba.Object
General-purpose bitmap class with read and write support for several common file formats.
This class handles loading of PNG, JPEG, BMP, TGA, as well as OpenEXR files, and it supports writing of PNG, JPEG and OpenEXR files.
PNG and OpenEXR files are optionally annotated with string-valued metadata, and the gamma setting can be stored as well. Please see the class methods and enumerations for further detail.
- __init__(self, pixel_format, component_format, size, channel_count=0, channel_names=[])#
Create a bitmap of the specified type and allocate the necessary amount of memory
- Parameter
pixel_format
(mitsuba.Bitmap.PixelFormat
): Specifies the pixel format (e.g. RGBA or Luminance-only)
- Parameter
component_format
(mitsuba.Struct.Type
): Specifies how the per-pixel components are encoded (e.g. unsigned 8 bit integers or 32-bit floating point values). The component format struct_type_v<Float> will be translated to the corresponding compile-time precision type (Float32 or Float64).
- Parameter
size
(mitsuba.Vector
): Specifies the horizontal and vertical bitmap size in pixels
- Parameter
channel_count
(int): Channel count of the image. This parameter is only required when
pixel_format
= PixelFormat::MultiChannel- Parameter
channel_names
(List[str]): Channel names of the image. This parameter is optional, and only used when
pixel_format
= PixelFormat::MultiChannel- Parameter
data
: External pointer to the image data. If set to
nullptr
, the implementation will allocate memory itself.
- Parameter
- __init__(self, arg0)#
- Parameter
arg0
(mitsuba.Bitmap
): no description available
- Parameter
- __init__(self, path, format=<FileFormat., Auto)#
- Parameter
path
(mitsuba.filesystem.path
): no description available
- Parameter
format
(mitsuba.Bitmap.FileFormat
): no description available
- Parameter
Auto
(9>): no description available
- Parameter
- __init__(self, stream, format=<FileFormat., Auto)#
- Parameter
stream
(mitsuba.Stream
): no description available
- Parameter
format
(mitsuba.Bitmap.FileFormat
): no description available
- Parameter
Auto
(9>): no description available
- Parameter
- __init__(self, array, pixel_format=None, channel_names=[])#
Initialize a Bitmap from any array that implements
__array_interface__
- Parameter
array
(mitsuba.PyObjectWrapper
): no description available
- Parameter
pixel_format
(object): no description available
- Parameter
channel_names
(List[str]): no description available
- Parameter
- class AlphaTransform#
Type of alpha transformation
Members:
- Empty#
No transformation (default)
- Premultiply#
No transformation (default)
- Unpremultiply#
No transformation (default)
- __init__(self, value)#
- Parameter
value
(int): no description available
- Parameter
- property AlphaTransform.name#
- class FileFormat#
Supported image file formats
Members:
- PNG#
Portable network graphics
The following is supported:
Loading and saving of 8/16-bit per component bitmaps for all pixel formats (Y, YA, RGB, RGBA)
Loading and saving of 1-bit per component mask bitmaps
Loading and saving of string-valued metadata fields
- OpenEXR#
OpenEXR high dynamic range file format developed by Industrial Light & Magic (ILM)
The following is supported:
Loading and saving of Float16 / Float32/ UInt32 bitmaps with all supported RGB/Luminance/Alpha combinations
Loading and saving of spectral bitmaps
Loading and saving of XYZ tristimulus bitmaps
Loading and saving of string-valued metadata fields
The following is not supported:
Saving of tiled images, tile-based read access
Display windows that are different than the data window
Loading of spectrum-valued bitmaps
- RGBE#
RGBE image format by Greg Ward
The following is supported
Loading and saving of Float32 - based RGB bitmaps
- PFM#
PFM (Portable Float Map) image format
The following is supported
Loading and saving of Float32 - based Luminance or RGB bitmaps
- PPM#
PPM (Portable Pixel Map) image format
The following is supported
Loading and saving of UInt8 and UInt16 - based RGB bitmaps
- JPEG#
Joint Photographic Experts Group file format
The following is supported:
Loading and saving of 8 bit per component RGB and luminance bitmaps
- TGA#
Truevision Advanced Raster Graphics Array file format
The following is supported:
Loading of uncompressed 8-bit RGB/RGBA files
- BMP#
Windows Bitmap file format
The following is supported:
Loading of uncompressed 8-bit luminance and RGBA bitmaps
- Unknown#
Unknown file format
- Auto#
Automatically detect the file format
Note: this flag only applies when loading a file. In this case, the source stream must support the
seek()
operation.
- __init__(self, value)#
- Parameter
value
(int): no description available
- Parameter
- property FileFormat.name#
- class PixelFormat#
This enumeration lists all pixel format types supported by the Bitmap class. This both determines the number of channels, and how they should be interpreted
Members:
- Y#
Single-channel luminance bitmap
- YA#
Two-channel luminance + alpha bitmap
- RGB#
RGB bitmap
- RGBA#
RGB bitmap + alpha channel
- RGBW#
RGB bitmap + weight (used by ImageBlock)
- RGBAW#
RGB bitmap + alpha channel + weight (used by ImageBlock)
- XYZ#
XYZ tristimulus bitmap
- XYZA#
XYZ tristimulus + alpha channel
- MultiChannel#
Arbitrary multi-channel bitmap without a fixed interpretation
- __init__(self, value)#
- Parameter
value
(int): no description available
- Parameter
- property PixelFormat.name#
- accumulate(overloaded)#
- accumulate(self, bitmap, source_offset)#
Accumulate the contents of another bitmap into the region with the specified offset
Out-of-bounds regions are safely ignored. It is assumed that
bitmap != this
.- Remark:
This function throws an exception when the bitmaps use different component formats or channels.
- Parameter
bitmap
(mitsuba.Bitmap
): no description available
- Parameter
source_offset
(mitsuba.Point
): no description available
- accumulate(self, bitmap, target_offset)#
Accumulate the contents of another bitmap into the region with the specified offset
This convenience function calls the main
accumulate()
implementation withsize
set tobitmap->size()
andsource_offset
set to zero. Out-of-bounds regions are ignored. It is assumed thatbitmap != this
.- Remark:
This function throws an exception when the bitmaps use different component formats or channels.
- Parameter
bitmap
(mitsuba.Bitmap
): no description available
- Parameter
target_offset
(mitsuba.Point
): no description available
- accumulate(self, bitmap)#
Accumulate the contents of another bitmap into the region with the specified offset
This convenience function calls the main
accumulate()
implementation withsize
set tobitmap->size()
andsource_offset
andtarget_offset
set to zero. Out-of-bounds regions are ignored. It is assumed thatbitmap != this
.- Remark:
This function throws an exception when the bitmaps use different component formats or channels.
- Parameter
bitmap
(mitsuba.Bitmap
): no description available
- buffer_size(self)#
Return the bitmap size in bytes (excluding metadata)
- Returns → int:
no description available
- bytes_per_pixel(self)#
Return the number bytes of storage used per pixel
- Returns → int:
no description available
- channel_count(self)#
Return the number of channels used by this bitmap
- Returns → int:
no description available
- clear(self)#
Clear the bitmap to zero
- Returns → None:
no description available
- component_format(self)#
Return the component format of this bitmap
- Returns →
mitsuba.Struct.Type
: no description available
- Returns →
- convert(overloaded)#
- convert(self, pixel_format=None, component_format=None, srgb_gamma=None, alpha_transform=<AlphaTransform., Empty)#
Convert the bitmap into another pixel and/or component format
This helper function can be used to efficiently convert a bitmap between different underlying representations. For instance, it can translate a uint8 sRGB bitmap to a linear float32 XYZ bitmap based on half-, single- or double-precision floating point-backed storage.
This function roughly does the following:
For each pixel and channel, it converts the associated value into a normalized linear-space form (any gamma of the source bitmap is removed)
gamma correction (sRGB ramp) is applied if
srgb_gamma
isTrue
The corrected value is clamped against the representable range of the desired component format.
The clamped gamma-corrected value is then written to the new bitmap
If the pixel formats differ, this function will also perform basic conversions (e.g. spectrum to rgb, luminance to uniform spectrum values, etc.)
Note that the alpha channel is assumed to be linear in both the source and target bitmap, hence it won’t be affected by any gamma-related transformations.
- Remark:
This
convert()
variant usually returns a new bitmap instance. When the conversion would just involve copying the original bitmap, the function becomes a no-op and returns the current instance.
pixel_format Specifies the desired pixel format
component_format Specifies the desired component format
srgb_gamma Specifies whether a sRGB gamma ramp should be applied to the output values.
- Parameter
pixel_format
(object): no description available
- Parameter
component_format
(object): no description available
- Parameter
srgb_gamma
(object): no description available
- Parameter
alpha_transform
(mitsuba.Bitmap.AlphaTransform
): no description available
- Parameter
Empty
(0>): no description available
- Returns →
mitsuba.Bitmap
: no description available
- convert(self, target)#
- Parameter
target
(mitsuba.Bitmap
): no description available
- Parameter
- detect_file_format(arg0)#
Attempt to detect the bitmap file format in a given stream
- Parameter
arg0
(mitsuba.Stream
): no description available
- Returns →
mitsuba.Bitmap.FileFormat
: no description available
- Parameter
- has_alpha(self)#
Return whether this image has an alpha channel
- Returns → bool:
no description available
- height(self)#
Return the bitmap’s height in pixels
- Returns → int:
no description available
- metadata(self)#
Return a Properties object containing the image metadata
- Returns → mitsuba::Properties:
no description available
- pixel_count(self)#
Return the total number of pixels
- Returns → int:
no description available
- pixel_format(self)#
Return the pixel format of this bitmap
- Returns →
mitsuba.Bitmap.PixelFormat
: no description available
- Returns →
- premultiplied_alpha(self)#
Return whether the bitmap uses premultiplied alpha
- Returns → bool:
no description available
- resample(overloaded)#
- resample(self, target, rfilter=None, bc=(<FilterBoundaryCondition., Clamp, Clamp, clamp=(-inf, inf), temp=None)#
Up- or down-sample this image to a different resolution
Uses the provided reconstruction filter and accounts for the requested horizontal and vertical boundary conditions when looking up data outside of the input domain.
A minimum and maximum image value can be specified to prevent to prevent out-of-range values that are created by the resampling process.
The optional
temp
parameter can be used to pass an image of resolutionVector2u(target->width(), this->height())
to avoid intermediate memory allocations.- Parameter
target
(mitsuba.Bitmap
): Pre-allocated bitmap of the desired target resolution
- Parameter
rfilter
(mitsuba.ReconstructionFilter
): A separable image reconstruction filter (default: 2-lobe Lanczos filter)
- Parameter
bch
: Horizontal and vertical boundary conditions (default: clamp)
- Parameter
clamp
(Tuple[float, float]): Filtered image pixels will be clamped to the following range. Default: -infinity..infinity (i.e. no clamping is used)
- Parameter
temp
(mitsuba.Bitmap
): Optional: image for intermediate computations
- Parameter
bc
(Tuple[mitsuba.FilterBoundaryCondition
,mitsuba.FilterBoundaryCondition
]): no description available
- Parameter
Clamp
(0>, <FilterBoundaryCondition.): no description available
- Parameter
Clamp
(0>)): no description available
- Parameter
- resample(self, res=None, bc=(<FilterBoundaryCondition., Clamp, Clamp, clamp=(-inf, inf))#
Up- or down-sample this image to a different resolution
This version is similar to the above resample() function – the main difference is that it does not work with preallocated bitmaps and takes the desired output resolution as first argument.
Uses the provided reconstruction filter and accounts for the requested horizontal and vertical boundary conditions when looking up data outside of the input domain.
A minimum and maximum image value can be specified to prevent to prevent out-of-range values that are created by the resampling process.
- Parameter
res
(mitsuba.Vector
): Desired output resolution
- Parameter
rfilter
: A separable image reconstruction filter (default: 2-lobe Lanczos filter)
- Parameter
bch
: Horizontal and vertical boundary conditions (default: clamp)
- Parameter
clamp
(Tuple[float, float]): Filtered image pixels will be clamped to the following range. Default: -infinity..infinity (i.e. no clamping is used)
- Parameter
bc
(Tuple[mitsuba.FilterBoundaryCondition
,mitsuba.FilterBoundaryCondition
]): no description available
- Parameter
Clamp
(0>, <FilterBoundaryCondition.): no description available
- Parameter
Clamp
(0>)): no description available
- Returns →
mitsuba.Bitmap
: no description available
- Parameter
- set_premultiplied_alpha(self, arg0)#
Specify whether the bitmap uses premultiplied alpha
- Parameter
arg0
(bool): no description available
- Returns → None:
no description available
- Parameter
- set_srgb_gamma(self, arg0)#
Specify whether the bitmap uses an sRGB gamma encoding
- Parameter
arg0
(bool): no description available
- Returns → None:
no description available
- Parameter
- size(self)#
Return the bitmap dimensions in pixels
- Returns →
mitsuba.Vector
: no description available
- Returns →
- split(self)#
Split an multi-channel image buffer (e.g. from an OpenEXR image with lots of AOVs) into its constituent layers
- Returns → List[Tuple[str,
mitsuba.Bitmap
]]: no description available
- Returns → List[Tuple[str,
- srgb_gamma(self)#
Return whether the bitmap uses an sRGB gamma encoding
- Returns → bool:
no description available
- struct_(self)#
Return a
Struct
instance describing the contents of the bitmap (const version)- Returns →
mitsuba.Struct
: no description available
- Returns →
- vflip(self)#
Vertically flip the bitmap
- Returns → None:
no description available
- width(self)#
Return the bitmap’s width in pixels
- Returns → int:
no description available
- write(overloaded)#
- write(self, stream, format=<FileFormat., Auto, quality=-1)#
Write an encoded form of the bitmap to a stream using the specified file format
- Parameter
stream
(mitsuba.Stream
): Target stream that will receive the encoded output
- Parameter
format
(mitsuba.Bitmap.FileFormat
): Target file format (OpenEXR, PNG, etc.) Detected from the filename by default.
- Parameter
quality
(int): Depending on the file format, this parameter takes on a slightly different meaning:
PNG images: Controls how much libpng will attempt to compress the output (with 1 being the lowest and 9 denoting the highest compression). The default argument uses the compression level 5.
JPEG images: denotes the desired quality (between 0 and 100). The default argument (-1) uses the highest quality (100).
OpenEXR images: denotes the quality level of the DWAB compressor, with higher values corresponding to a lower quality. A value of 45 is recommended as the default for lossy compression. The default argument (-1) causes the implementation to switch to the lossless PIZ compressor.
- Parameter
Auto
(9>): no description available
- Parameter
- write(self, path, format=<FileFormat., Auto, quality=-1)#
Write an encoded form of the bitmap to a file using the specified file format
- Parameter
path
(mitsuba.filesystem.path
): Target file path on disk
- Parameter
format
(mitsuba.Bitmap.FileFormat
): Target file format (FileFormat::OpenEXR, FileFormat::PNG, etc.) Detected from the filename by default.
- Parameter
quality
(int): Depending on the file format, this parameter takes on a slightly different meaning:
PNG images: Controls how much libpng will attempt to compress the output (with 1 being the lowest and 9 denoting the highest compression). The default argument uses the compression level 5.
JPEG images: denotes the desired quality (between 0 and 100). The default argument (-1) uses the highest quality (100).
OpenEXR images: denotes the quality level of the DWAB compressor, with higher values corresponding to a lower quality. A value of 45 is recommended as the default for lossy compression. The default argument (-1) causes the implementation to switch to the lossless PIZ compressor.
- Parameter
Auto
(9>): no description available
- Parameter
- write_async(self, path, format=<FileFormat., Auto, quality=-1)#
Equivalent to write(), but executes asynchronously on a different thread
- Parameter
path
(mitsuba.filesystem.path
): no description available
- Parameter
format
(mitsuba.Bitmap.FileFormat
): no description available
- Parameter
Auto
(9>): no description available
- Parameter
quality
(int): no description available
- Returns → None:
no description available
- Parameter
- class mitsuba.BitmapReconstructionFilter#
Base class:
mitsuba.Object
Generic interface to separable image reconstruction filters
When resampling bitmaps or adding samples to a rendering in progress, Mitsuba first convolves them with a image reconstruction filter. Various kinds are implemented as subclasses of this interface.
Because image filters are generally too expensive to evaluate for each sample, the implementation of this class internally precomputes an discrete representation, whose resolution given by MI_FILTER_RESOLUTION.
- border_size(self)#
Return the block border size required when rendering with this filter
- Returns → int:
no description available
- eval(self, x, active=True)#
Evaluate the filter function
- Parameter
x
(float): no description available
- Parameter
active
(bool): Mask to specify active lanes.
- Returns → float:
no description available
- Parameter
- eval_discretized(self, x, active=True)#
Evaluate a discretized version of the filter (generally faster than ‘eval’)
- Parameter
x
(float): no description available
- Parameter
active
(bool): Mask to specify active lanes.
- Returns → float:
no description available
- Parameter
- is_box_filter(self)#
Check whether this is a box filter?
- Returns → bool:
no description available
- radius(self)#
Return the filter’s width
- Returns → float:
no description available
- class mitsuba.Resampler#
Utility class for efficiently resampling discrete datasets to different resolutions
- Template parameter
Scalar
: Denotes the underlying floating point data type (i.e.
half
,float
, ordouble
)
- __init__(self, rfilter, source_res, target_res)#
Create a new Resampler object that transforms between the specified resolutions
This constructor precomputes all information needed to efficiently perform the desired resampling operation. For that reason, it is most efficient if it can be used over and over again (e.g. to resample the equal-sized rows of a bitmap)
- Parameter
source_res
(int): Source resolution
- Parameter
target_res
(int): Desired target resolution
- Parameter
rfilter
(mitsuba.ReconstructionFilter
): no description available
- Parameter
- boundary_condition(self)#
Return the boundary condition that should be used when looking up samples outside of the defined input domain
- Returns →
mitsuba.FilterBoundaryCondition
: no description available
- Returns →
- clamp(self)#
Returns the range to which resampled values will be clamped
The default is -infinity to infinity (i.e. no clamping is used)
- Returns → Tuple[float, float]:
no description available
- resample(self, source, source_stride, target, target_stride, channels)#
Resample a multi-channel array and clamp the results to a specified valid range
- Parameter
source
(numpy.ndarray[numpy.float32]): Source array of samples
- Parameter
target
(numpy.ndarray[numpy.float32]): Target array of samples
- Parameter
source_stride
(int): Stride of samples in the source array. A value of ‘1’ implies that they are densely packed.
- Parameter
target_stride
(int): Stride of samples in the source array. A value of ‘1’ implies that they are densely packed.
- Parameter
channels
(int): Number of channels to be resampled
- Returns → None:
no description available
- Parameter
- set_boundary_condition(self, arg0)#
Set the boundary condition that should be used when looking up samples outside of the defined input domain
The default is FilterBoundaryCondition::Clamp
- Parameter
arg0
(mitsuba.FilterBoundaryCondition
): no description available
- Returns → None:
no description available
- Parameter
- set_clamp(self, arg0)#
If specified, resampled values will be clamped to the given range
- Parameter
arg0
(Tuple[float, float]): no description available
- Returns → None:
no description available
- Parameter
- source_resolution(self)#
Return the reconstruction filter’s source resolution
- Returns → int:
no description available
- taps(self)#
Return the number of taps used by the reconstruction filter
- Returns → int:
no description available
- target_resolution(self)#
Return the reconstruction filter’s target resolution
- Returns → int:
no description available
- Template parameter
Warp#
- mitsuba.warp.beckmann_to_square(v, alpha)#
Inverse of the mapping square_to_uniform_cone
- Parameter
v
(mitsuba.Vector3f
): no description available
- Parameter
alpha
(drjit.llvm.ad.Float): no description available
- Returns →
mitsuba.Point2f
: no description available
- Parameter
- mitsuba.warp.bilinear_to_square(v00, v10, v01, v11, sample)#
Inverse of square_to_bilinear
- Parameter
v00
(drjit.llvm.ad.Float): no description available
- Parameter
v10
(drjit.llvm.ad.Float): no description available
- Parameter
v01
(drjit.llvm.ad.Float): no description available
- Parameter
v11
(drjit.llvm.ad.Float): no description available
- Parameter
sample
(mitsuba.Point2f
): no description available
- Returns → Tuple[
mitsuba.Point2f
, drjit.llvm.ad.Float]: no description available
- Parameter
- mitsuba.warp.cosine_hemisphere_to_square(v)#
Inverse of the mapping square_to_cosine_hemisphere
- Parameter
v
(mitsuba.Vector3f
): no description available
- Returns →
mitsuba.Point2f
: no description available
- Parameter
- mitsuba.warp.interval_to_linear(v0, v1, sample)#
Importance sample a linear interpolant
Given a linear interpolant on the unit interval with boundary values
v0
,v1
(wherev1
is the value atx=1
), warp a uniformly distributed input samplesample
so that the resulting probability distribution matches the linear interpolant.- Parameter
v0
(drjit.llvm.ad.Float): no description available
- Parameter
v1
(drjit.llvm.ad.Float): no description available
- Parameter
sample
(drjit.llvm.ad.Float): no description available
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- mitsuba.warp.interval_to_nonuniform_tent(a, b, c, d)#
Warp a uniformly distributed sample on [0, 1] to a nonuniform tent distribution with nodes
{a, b, c}
- Parameter
a
(drjit.llvm.ad.Float): no description available
- Parameter
b
(drjit.llvm.ad.Float): no description available
- Parameter
c
(drjit.llvm.ad.Float): no description available
- Parameter
d
(drjit.llvm.ad.Float): no description available
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- mitsuba.warp.interval_to_tent(sample)#
Warp a uniformly distributed sample on [0, 1] to a tent distribution
- Parameter
sample
(drjit.llvm.ad.Float): no description available
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- mitsuba.warp.linear_to_interval(v0, v1, sample)#
Inverse of interval_to_linear
- Parameter
v0
(drjit.llvm.ad.Float): no description available
- Parameter
v1
(drjit.llvm.ad.Float): no description available
- Parameter
sample
(drjit.llvm.ad.Float): no description available
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- mitsuba.warp.square_to_beckmann(sample, alpha)#
Warp a uniformly distributed square sample to a Beckmann distribution
- Parameter
sample
(mitsuba.Point2f
): no description available
- Parameter
alpha
(drjit.llvm.ad.Float): no description available
- Returns →
mitsuba.Vector3f
: no description available
- Parameter
- mitsuba.warp.square_to_beckmann_pdf(v, alpha)#
Probability density of square_to_beckmann()
- Parameter
v
(mitsuba.Vector3f
): no description available
- Parameter
alpha
(drjit.llvm.ad.Float): no description available
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- mitsuba.warp.square_to_bilinear(v00, v10, v01, v11, sample)#
Importance sample a bilinear interpolant
Given a bilinear interpolant on the unit square with corner values
v00
,v10
,v01
,v11
(wherev10
is the value at (x,y) == (0, 0)), warp a uniformly distributed input samplesample
so that the resulting probability distribution matches the linear interpolant.The implementation first samples the marginal distribution to obtain
y
, followed by sampling the conditional distribution to obtainx
.Returns the sampled point and PDF for convenience.
- Parameter
v00
(drjit.llvm.ad.Float): no description available
- Parameter
v10
(drjit.llvm.ad.Float): no description available
- Parameter
v01
(drjit.llvm.ad.Float): no description available
- Parameter
v11
(drjit.llvm.ad.Float): no description available
- Parameter
sample
(mitsuba.Point2f
): no description available
- Returns → Tuple[
mitsuba.Point2f
, drjit.llvm.ad.Float]: no description available
- Parameter
- mitsuba.warp.square_to_bilinear_pdf(v00, v10, v01, v11, sample)#
- Parameter
v00
(drjit.llvm.ad.Float): no description available
- Parameter
v10
(drjit.llvm.ad.Float): no description available
- Parameter
v01
(drjit.llvm.ad.Float): no description available
- Parameter
v11
(drjit.llvm.ad.Float): no description available
- Parameter
sample
(mitsuba.Point2f
): no description available
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- mitsuba.warp.square_to_cosine_hemisphere(sample)#
Sample a cosine-weighted vector on the unit hemisphere with respect to solid angles
- Parameter
sample
(mitsuba.Point2f
): no description available
- Returns →
mitsuba.Vector3f
: no description available
- Parameter
- mitsuba.warp.square_to_cosine_hemisphere_pdf(v)#
Density of square_to_cosine_hemisphere() with respect to solid angles
- Parameter
v
(mitsuba.Vector3f
): no description available
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- mitsuba.warp.square_to_rough_fiber(sample, wi, tangent, kappa)#
Warp a uniformly distributed square sample to a rough fiber distribution
- Parameter
sample
(mitsuba.Point3f
): no description available
- Parameter
wi
(mitsuba.Vector3f
): no description available
- Parameter
tangent
(mitsuba.Vector3f
): no description available
- Parameter
kappa
(drjit.llvm.ad.Float): no description available
- Returns →
mitsuba.Vector3f
: no description available
- Parameter
- mitsuba.warp.square_to_rough_fiber_pdf(v, wi, tangent, kappa)#
Probability density of square_to_rough_fiber()
- Parameter
v
(mitsuba.Vector3f
): no description available
- Parameter
wi
(mitsuba.Vector3f
): no description available
- Parameter
tangent
(mitsuba.Vector3f
): no description available
- Parameter
kappa
(drjit.llvm.ad.Float): no description available
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- mitsuba.warp.square_to_std_normal(v)#
Sample a point on a 2D standard normal distribution. Internally uses the Box-Muller transformation
- Parameter
v
(mitsuba.Point2f
): no description available
- Returns →
mitsuba.Point2f
: no description available
- Parameter
- mitsuba.warp.square_to_std_normal_pdf(v)#
- Parameter
v
(mitsuba.Point2f
): no description available
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- mitsuba.warp.square_to_tent(sample)#
Warp a uniformly distributed square sample to a 2D tent distribution
- Parameter
sample
(mitsuba.Point2f
): no description available
- Returns →
mitsuba.Point2f
: no description available
- Parameter
- mitsuba.warp.square_to_tent_pdf(v)#
Density of square_to_tent per unit area.
- Parameter
v
(mitsuba.Point2f
): no description available
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- mitsuba.warp.square_to_uniform_cone(v, cos_cutoff)#
Uniformly sample a vector that lies within a given cone of angles around the Z axis
- Parameter
cos_cutoff
(drjit.llvm.ad.Float): Cosine of the cutoff angle
- Parameter
sample
: A uniformly distributed sample on \([0,1]^2\)
- Parameter
v
(mitsuba.Point2f
): no description available
- Returns →
mitsuba.Vector3f
: no description available
- Parameter
- mitsuba.warp.square_to_uniform_cone_pdf(v, cos_cutoff)#
Density of square_to_uniform_cone per unit area.
- Parameter
cos_cutoff
(drjit.llvm.ad.Float): Cosine of the cutoff angle
- Parameter
v
(mitsuba.Vector3f
): no description available
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- mitsuba.warp.square_to_uniform_disk(sample)#
Uniformly sample a vector on a 2D disk
- Parameter
sample
(mitsuba.Point2f
): no description available
- Returns →
mitsuba.Point2f
: no description available
- Parameter
- mitsuba.warp.square_to_uniform_disk_concentric(sample)#
Low-distortion concentric square to disk mapping by Peter Shirley
- Parameter
sample
(mitsuba.Point2f
): no description available
- Returns →
mitsuba.Point2f
: no description available
- Parameter
- mitsuba.warp.square_to_uniform_disk_concentric_pdf(p)#
Density of square_to_uniform_disk per unit area
- Parameter
p
(mitsuba.Point2f
): no description available
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- mitsuba.warp.square_to_uniform_disk_pdf(p)#
Density of square_to_uniform_disk per unit area
- Parameter
p
(mitsuba.Point2f
): no description available
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- mitsuba.warp.square_to_uniform_hemisphere(sample)#
Uniformly sample a vector on the unit hemisphere with respect to solid angles
- Parameter
sample
(mitsuba.Point2f
): no description available
- Returns →
mitsuba.Vector3f
: no description available
- Parameter
- mitsuba.warp.square_to_uniform_hemisphere_pdf(v)#
Density of square_to_uniform_hemisphere() with respect to solid angles
- Parameter
v
(mitsuba.Vector3f
): no description available
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- mitsuba.warp.square_to_uniform_sphere(sample)#
Uniformly sample a vector on the unit sphere with respect to solid angles
- Parameter
sample
(mitsuba.Point2f
): no description available
- Returns →
mitsuba.Vector3f
: no description available
- Parameter
- mitsuba.warp.square_to_uniform_sphere_pdf(v)#
Density of square_to_uniform_sphere() with respect to solid angles
- Parameter
v
(mitsuba.Vector3f
): no description available
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- mitsuba.warp.square_to_uniform_square_concentric(sample)#
Low-distortion concentric square to square mapping (meant to be used in conjunction with another warping method that maps to the sphere)
- Parameter
sample
(mitsuba.Point2f
): no description available
- Returns →
mitsuba.Point2f
: no description available
- Parameter
- mitsuba.warp.square_to_uniform_triangle(sample)#
Convert an uniformly distributed square sample into barycentric coordinates
- Parameter
sample
(mitsuba.Point2f
): no description available
- Returns →
mitsuba.Point2f
: no description available
- Parameter
- mitsuba.warp.square_to_uniform_triangle_pdf(p)#
Density of square_to_uniform_triangle per unit area.
- Parameter
p
(mitsuba.Point2f
): no description available
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- mitsuba.warp.square_to_von_mises_fisher(sample, kappa)#
Warp a uniformly distributed square sample to a von Mises Fisher distribution
- Parameter
sample
(mitsuba.Point2f
): no description available
- Parameter
kappa
(drjit.llvm.ad.Float): no description available
- Returns →
mitsuba.Vector3f
: no description available
- Parameter
- mitsuba.warp.square_to_von_mises_fisher_pdf(v, kappa)#
Probability density of square_to_von_mises_fisher()
- Parameter
v
(mitsuba.Vector3f
): no description available
- Parameter
kappa
(drjit.llvm.ad.Float): no description available
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- mitsuba.warp.tent_to_interval(value)#
Warp a tent distribution to a uniformly distributed sample on [0, 1]
- Parameter
value
(drjit.llvm.ad.Float): no description available
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- mitsuba.warp.tent_to_square(value)#
Warp a uniformly distributed square sample to a 2D tent distribution
- Parameter
value
(mitsuba.Point2f
): no description available
- Returns →
mitsuba.Point2f
: no description available
- Parameter
- mitsuba.warp.uniform_cone_to_square(v, cos_cutoff)#
Inverse of the mapping square_to_uniform_cone
- Parameter
v
(mitsuba.Vector3f
): no description available
- Parameter
cos_cutoff
(drjit.llvm.ad.Float): no description available
- Returns →
mitsuba.Point2f
: no description available
- Parameter
- mitsuba.warp.uniform_disk_to_square(p)#
Inverse of the mapping square_to_uniform_disk
- Parameter
p
(mitsuba.Point2f
): no description available
- Returns →
mitsuba.Point2f
: no description available
- Parameter
- mitsuba.warp.uniform_disk_to_square_concentric(p)#
Inverse of the mapping square_to_uniform_disk_concentric
- Parameter
p
(mitsuba.Point2f
): no description available
- Returns →
mitsuba.Point2f
: no description available
- Parameter
- mitsuba.warp.uniform_hemisphere_to_square(v)#
Inverse of the mapping square_to_uniform_hemisphere
- Parameter
v
(mitsuba.Vector3f
): no description available
- Returns →
mitsuba.Point2f
: no description available
- Parameter
- mitsuba.warp.uniform_sphere_to_square(sample)#
Inverse of the mapping square_to_uniform_sphere
- Parameter
sample
(mitsuba.Vector3f
): no description available
- Returns →
mitsuba.Point2f
: no description available
- Parameter
- mitsuba.warp.uniform_triangle_to_square(p)#
Inverse of the mapping square_to_uniform_triangle
- Parameter
p
(mitsuba.Point2f
): no description available
- Returns →
mitsuba.Point2f
: no description available
- Parameter
- mitsuba.warp.von_mises_fisher_to_square(v, kappa)#
Inverse of the mapping von_mises_fisher_to_square
- Parameter
v
(mitsuba.Vector3f
): no description available
- Parameter
kappa
(drjit.llvm.ad.Float): no description available
- Returns →
mitsuba.Point2f
: no description available
- Parameter
Distributions#
- class mitsuba.ContinuousDistribution#
Continuous 1D probability distribution defined in terms of a regularly sampled linear interpolant
This data structure represents a continuous 1D probability distribution that is defined as a linear interpolant of a regularly discretized signal. The class provides various routines for transforming uniformly distributed samples so that they follow the stored distribution. Note that unnormalized probability density functions (PDFs) will automatically be normalized during initialization. The associated scale factor can be retrieved using the function normalization().
- __init__(self)#
Continuous 1D probability distribution defined in terms of a regularly sampled linear interpolant
This data structure represents a continuous 1D probability distribution that is defined as a linear interpolant of a regularly discretized signal. The class provides various routines for transforming uniformly distributed samples so that they follow the stored distribution. Note that unnormalized probability density functions (PDFs) will automatically be normalized during initialization. The associated scale factor can be retrieved using the function normalization().
- __init__(self, arg0)#
Copy constructor
- Parameter
arg0
(mitsuba.ContinuousDistribution
): no description available
- Parameter
- __init__(self, range, pdf)#
Initialize from a given density function on the interval
range
- Parameter
range
(mitsuba.ScalarVector2f
): no description available
- Parameter
pdf
(drjit.llvm.ad.Float): no description available
- Parameter
- cdf(self)#
Return the unnormalized discrete cumulative distribution function over intervals
- Returns → drjit.llvm.ad.Float:
no description available
- empty(self)#
Is the distribution object empty/uninitialized?
- Returns → bool:
no description available
- eval_cdf(self, x, active=True)#
Evaluate the unnormalized cumulative distribution function (CDF) at position
p
- Parameter
x
(drjit.llvm.ad.Float): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- eval_cdf_normalized(self, x, active=True)#
Evaluate the unnormalized cumulative distribution function (CDF) at position
p
- Parameter
x
(drjit.llvm.ad.Float): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- eval_pdf(self, x, active=True)#
Evaluate the unnormalized probability mass function (PDF) at position
x
- Parameter
x
(drjit.llvm.ad.Float): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- eval_pdf_normalized(self, x, active=True)#
Evaluate the normalized probability mass function (PDF) at position
x
- Parameter
x
(drjit.llvm.ad.Float): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- integral(self)#
Return the original integral of PDF entries before normalization
- Returns → drjit.llvm.ad.Float:
no description available
- interval_resolution(self)#
Return the minimum resolution of the discretization
- Returns → float:
no description available
- max(self)#
- Returns → float:
no description available
- normalization(self)#
Return the normalization factor (i.e. the inverse of sum())
- Returns → drjit.llvm.ad.Float:
no description available
- pdf(self)#
Return the unnormalized discretized probability density function
- Returns → drjit.llvm.ad.Float:
no description available
- range(self)#
Return the range of the distribution
- Returns →
mitsuba.ScalarVector2f
: no description available
- Returns →
- sample(self, value, active=True)#
%Transform a uniformly distributed sample to the stored distribution
- Parameter
value
(drjit.llvm.ad.Float): A uniformly distributed sample on the interval [0, 1].
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → drjit.llvm.ad.Float:
The sampled position.
- Parameter
- sample_pdf(self, value, active=True)#
%Transform a uniformly distributed sample to the stored distribution
- Parameter
value
(drjit.llvm.ad.Float): A uniformly distributed sample on the interval [0, 1].
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → Tuple[drjit.llvm.ad.Float, drjit.llvm.ad.Float]:
A tuple consisting of
1. the sampled position. 2. the normalized probability density of the sample.
- Parameter
- size(self)#
Return the number of discretizations
- Returns → int:
no description available
- update(self)#
Update the internal state. Must be invoked when changing the pdf.
- Returns → None:
no description available
- class mitsuba.DiscreteDistribution#
Discrete 1D probability distribution
This data structure represents a discrete 1D probability distribution and provides various routines for transforming uniformly distributed samples so that they follow the stored distribution. Note that unnormalized probability mass functions (PMFs) will automatically be normalized during initialization. The associated scale factor can be retrieved using the function normalization().
- __init__(self)#
Discrete 1D probability distribution
This data structure represents a discrete 1D probability distribution and provides various routines for transforming uniformly distributed samples so that they follow the stored distribution. Note that unnormalized probability mass functions (PMFs) will automatically be normalized during initialization. The associated scale factor can be retrieved using the function normalization().
- __init__(self, arg0)#
Copy constructor
- Parameter
arg0
(mitsuba.DiscreteDistribution
): no description available
- Parameter
- __init__(self, pmf)#
Initialize from a given probability mass function
- Parameter
pmf
(drjit.llvm.ad.Float): no description available
- Parameter
- cdf(self)#
Return the unnormalized cumulative distribution function
- Returns → drjit.llvm.ad.Float:
no description available
- empty(self)#
Is the distribution object empty/uninitialized?
- Returns → bool:
no description available
- eval_cdf(self, index, active=True)#
Evaluate the unnormalized cumulative distribution function (CDF) at index
index
- Parameter
index
(drjit.llvm.ad.UInt): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- eval_cdf_normalized(self, index, active=True)#
Evaluate the normalized cumulative distribution function (CDF) at index
index
- Parameter
index
(drjit.llvm.ad.UInt): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- eval_pmf(self, index, active=True)#
Evaluate the unnormalized probability mass function (PMF) at index
index
- Parameter
index
(drjit.llvm.ad.UInt): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- eval_pmf_normalized(self, index, active=True)#
Evaluate the normalized probability mass function (PMF) at index
index
- Parameter
index
(drjit.llvm.ad.UInt): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- normalization(self)#
Return the normalization factor (i.e. the inverse of sum())
- Returns → drjit.llvm.ad.Float:
no description available
- pmf(self)#
Return the unnormalized probability mass function
- Returns → drjit.llvm.ad.Float:
no description available
- sample(self, value, active=True)#
%Transform a uniformly distributed sample to the stored distribution
- Parameter
value
(drjit.llvm.ad.Float): A uniformly distributed sample on the interval [0, 1].
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → drjit.llvm.ad.UInt:
The discrete index associated with the sample
- Parameter
- sample_pmf(self, value, active=True)#
%Transform a uniformly distributed sample to the stored distribution
- Parameter
value
(drjit.llvm.ad.Float): A uniformly distributed sample on the interval [0, 1].
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → Tuple[drjit.llvm.ad.UInt, drjit.llvm.ad.Float]:
A tuple consisting of
1. the discrete index associated with the sample, and 2. the normalized probability value of the sample.
- Parameter
- sample_reuse(self, value, active=True)#
%Transform a uniformly distributed sample to the stored distribution
The original sample is value adjusted so that it can be reused as a uniform variate.
- Parameter
value
(drjit.llvm.ad.Float): A uniformly distributed sample on the interval [0, 1].
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → Tuple[drjit.llvm.ad.UInt, drjit.llvm.ad.Float]:
A tuple consisting of
1. the discrete index associated with the sample, and 2. the re-scaled sample value.
- Parameter
- sample_reuse_pmf(self, value, active=True)#
%Transform a uniformly distributed sample to the stored distribution.
The original sample is value adjusted so that it can be reused as a uniform variate.
- Parameter
value
(drjit.llvm.ad.Float): A uniformly distributed sample on the interval [0, 1].
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → Tuple[drjit.llvm.ad.UInt, drjit.llvm.ad.Float, drjit.llvm.ad.Float]:
A tuple consisting of
1. the discrete index associated with the sample 2. the re-scaled sample value 3. the normalized probability value of the sample
- Parameter
- size(self)#
Return the number of entries
- Returns → int:
no description available
- sum(self)#
Return the original sum of PMF entries before normalization
- Returns → drjit.llvm.ad.Float:
no description available
- update(self)#
Update the internal state. Must be invoked when changing the pmf.
- Returns → None:
no description available
- class mitsuba.DiscreteDistribution2D#
- eval(self, pos, active=True)#
- Parameter
pos
(mitsuba.Point2u
): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- pdf(self, pos, active=True)#
- Parameter
pos
(mitsuba.Point2u
): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- sample(self, sample, active=True)#
- Parameter
sample
(mitsuba.Point2f
): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → Tuple[
mitsuba.Point2u
, drjit.llvm.ad.Float,mitsuba.Point2f
]: no description available
- Parameter
- class mitsuba.IrregularContinuousDistribution#
Continuous 1D probability distribution defined in terms of an irregularly sampled linear interpolant
This data structure represents a continuous 1D probability distribution that is defined as a linear interpolant of an irregularly discretized signal. The class provides various routines for transforming uniformly distributed samples so that they follow the stored distribution. Note that unnormalized probability density functions (PDFs) will automatically be normalized during initialization. The associated scale factor can be retrieved using the function normalization().
- __init__(self)#
Continuous 1D probability distribution defined in terms of an irregularly sampled linear interpolant
This data structure represents a continuous 1D probability distribution that is defined as a linear interpolant of an irregularly discretized signal. The class provides various routines for transforming uniformly distributed samples so that they follow the stored distribution. Note that unnormalized probability density functions (PDFs) will automatically be normalized during initialization. The associated scale factor can be retrieved using the function normalization().
- __init__(self, arg0)#
Copy constructor
- Parameter
arg0
(mitsuba.IrregularContinuousDistribution
): no description available
- Parameter
- __init__(self, nodes, pdf)#
Initialize from a given density function discretized on nodes
nodes
- Parameter
nodes
(drjit.llvm.ad.Float): no description available
- Parameter
pdf
(drjit.llvm.ad.Float): no description available
- Parameter
- cdf(self)#
Return the unnormalized discrete cumulative distribution function over intervals
- Returns → drjit.llvm.ad.Float:
no description available
- empty(self)#
Is the distribution object empty/uninitialized?
- Returns → bool:
no description available
- eval_cdf(self, x, active=True)#
Evaluate the unnormalized cumulative distribution function (CDF) at position
p
- Parameter
x
(drjit.llvm.ad.Float): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- eval_cdf_normalized(self, x, active=True)#
Evaluate the unnormalized cumulative distribution function (CDF) at position
p
- Parameter
x
(drjit.llvm.ad.Float): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- eval_pdf(self, x, active=True)#
Evaluate the unnormalized probability mass function (PDF) at position
x
- Parameter
x
(drjit.llvm.ad.Float): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- eval_pdf_normalized(self, x, active=True)#
Evaluate the normalized probability mass function (PDF) at position
x
- Parameter
x
(drjit.llvm.ad.Float): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- integral(self)#
Return the original integral of PDF entries before normalization
- Returns → drjit.llvm.ad.Float:
no description available
- interval_resolution(self)#
Return the minimum resolution of the discretization
- Returns → float:
no description available
- max(self)#
- Returns → float:
no description available
- nodes(self)#
Return the nodes of the underlying discretization
- Returns → drjit.llvm.ad.Float:
no description available
- normalization(self)#
Return the normalization factor (i.e. the inverse of sum())
- Returns → drjit.llvm.ad.Float:
no description available
- pdf(self)#
Return the unnormalized discretized probability density function
- Returns → drjit.llvm.ad.Float:
no description available
- range(self)#
Return the range of the distribution
- Returns → drjit.scalar.Array2f:
no description available
- sample(self, value, active=True)#
%Transform a uniformly distributed sample to the stored distribution
- Parameter
value
(drjit.llvm.ad.Float): A uniformly distributed sample on the interval [0, 1].
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → drjit.llvm.ad.Float:
The sampled position.
- Parameter
- sample_pdf(self, value, active=True)#
%Transform a uniformly distributed sample to the stored distribution
- Parameter
value
(drjit.llvm.ad.Float): A uniformly distributed sample on the interval [0, 1].
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → Tuple[drjit.llvm.ad.Float, drjit.llvm.ad.Float]:
A tuple consisting of
1. the sampled position. 2. the normalized probability density of the sample.
- Parameter
- size(self)#
Return the number of discretizations
- Returns → int:
no description available
- update(self)#
Update the internal state. Must be invoked when changing the pdf or range.
- Returns → None:
no description available
- class mitsuba.MicrofacetDistribution#
Implementation of the Beckman and GGX / Trowbridge-Reitz microfacet distributions and various useful sampling routines
Based on the papers
“Microfacet Models for Refraction through Rough Surfaces” by Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance
and
“Importance Sampling Microfacet-Based BSDFs using the Distribution of Visible Normals” by Eric Heitz and Eugene D’Eon
The visible normal sampling code was provided by Eric Heitz and Eugene D’Eon. An improvement of the Beckmann model sampling routine is discussed in
“An Improved Visible Normal Sampling Routine for the Beckmann Distribution” by Wenzel Jakob
An improvement of the GGX model sampling routine is discussed in “A Simpler and Exact Sampling Routine for the GGX Distribution of Visible Normals” by Eric Heitz
- __init__(self, type, alpha, sample_visible=True)#
- Parameter
type
(mitsuba.MicrofacetType
): no description available
- Parameter
alpha
(float): no description available
- Parameter
sample_visible
(bool): no description available
- Parameter
- __init__(self, type, alpha_u, alpha_v, sample_visible=True)#
- Parameter
type
(mitsuba.MicrofacetType
): no description available
- Parameter
alpha_u
(float): no description available
- Parameter
alpha_v
(float): no description available
- Parameter
sample_visible
(bool): no description available
- Parameter
- __init__(self, type, alpha, sample_visible=True)#
- Parameter
type
(mitsuba.MicrofacetType
): no description available
- Parameter
alpha
(drjit.llvm.ad.Float): no description available
- Parameter
sample_visible
(bool): no description available
- Parameter
- __init__(self, type, alpha_u, alpha_v, sample_visible=True)#
- Parameter
type
(mitsuba.MicrofacetType
): no description available
- Parameter
alpha_u
(drjit.llvm.ad.Float): no description available
- Parameter
alpha_v
(drjit.llvm.ad.Float): no description available
- Parameter
sample_visible
(bool): no description available
- Parameter
- __init__(self, arg0)#
- Parameter
arg0
(mitsuba.Properties
): no description available
- Parameter
- G(self, wi, wo, m)#
Smith’s separable shadowing-masking approximation
- Parameter
wi
(mitsuba.Vector3f
): no description available
- Parameter
wo
(mitsuba.Vector3f
): no description available
- Parameter
m
(mitsuba.Vector3f
): no description available
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- alpha(self)#
Return the roughness (isotropic case)
- Returns → drjit.llvm.ad.Float:
no description available
- alpha_u(self)#
Return the roughness along the tangent direction
- Returns → drjit.llvm.ad.Float:
no description available
- alpha_v(self)#
Return the roughness along the bitangent direction
- Returns → drjit.llvm.ad.Float:
no description available
- eval(self, m)#
Evaluate the microfacet distribution function
- Parameter
m
(mitsuba.Vector3f
): The microfacet normal
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- is_anisotropic(self)#
Is this an anisotropic microfacet distribution?
- Returns → bool:
no description available
- is_isotropic(self)#
Is this an isotropic microfacet distribution?
- Returns → bool:
no description available
- pdf(self, wi, m)#
Returns the density function associated with the sample() function.
- Parameter
wi
(mitsuba.Vector3f
): The incident direction (only relevant if visible normal sampling is used)
- Parameter
m
(mitsuba.Vector3f
): The microfacet normal
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- sample(self, wi, sample)#
Draw a sample from the microfacet normal distribution and return the associated probability density
- Parameter
wi
(mitsuba.Vector3f
): The incident direction. Only used if visible normal sampling is enabled.
- Parameter
sample
(mitsuba.Point2f
): A uniformly distributed 2D sample
- Returns → Tuple[
mitsuba.Normal3f
, drjit.llvm.ad.Float]: A tuple consisting of the sampled microfacet normal and the associated solid angle density
- Parameter
- sample_visible(self)#
Return whether or not only visible normals are sampled?
- Returns → bool:
no description available
- sample_visible_11(self, cos_theta_i, sample)#
Visible normal sampling code for the alpha=1 case
- Parameter
cos_theta_i
(drjit.llvm.ad.Float): no description available
- Parameter
sample
(mitsuba.Point2f
): no description available
- Returns →
mitsuba.Vector2f
: no description available
- Parameter
- scale_alpha(self, value)#
Scale the roughness values by some constant
- Parameter
value
(drjit.llvm.ad.Float): no description available
- Returns → None:
no description available
- Parameter
- smith_g1(self, v, m)#
Smith’s shadowing-masking function for a single direction
- Parameter
v
(mitsuba.Vector3f
): An arbitrary direction
- Parameter
m
(mitsuba.Vector3f
): The microfacet normal
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- type(self)#
Return the distribution type
- Returns →
mitsuba.MicrofacetType
: no description available
- Returns →
- class mitsuba.Hierarchical2D0#
Implements a hierarchical sample warping scheme for 2D distributions with linear interpolation and an optional dependence on additional parameters
This class takes a rectangular floating point array as input and constructs internal data structures to efficiently map uniform variates from the unit square
[0, 1]^2
to a function on[0, 1]^2
that linearly interpolates the input array.The mapping is constructed from a sequence of
log2(max(res))
hierarchical sample warping steps, whereres
is the input array resolution. It is bijective and generally very well-behaved (i.e. low distortion), which makes it a good choice for structured point sets such as the Halton or Sobol sequence.The implementation also supports conditional distributions, i.e. 2D distributions that depend on an arbitrary number of parameters (indicated via the
Dimension
template parameter).In this case, the input array should have dimensions
N0 x N1 x ... x Nn x res.y() x res.x()
(where the last dimension is contiguous in memory), and theparam_res
should be set to{ N0, N1, ..., Nn }
, andparam_values
should contain the parameter values where the distribution is discretized. Linear interpolation is used when sampling or evaluating the distribution for in-between parameter values.- Remark:
The Python API exposes explicitly instantiated versions of this class named Hierarchical2D0, Hierarchical2D1, and Hierarchical2D2 for data that depends on 0, 1, and 2 parameters, respectively.
- __init__(self, data, param_values=[], normalize=True, enable_sampling=True)#
Construct a hierarchical sample warping scheme for floating point data of resolution
size
.param_res
andparam_values
are only needed for conditional distributions (see the text describing the Hierarchical2D class).If
normalize
is set toFalse
, the implementation will not re- scale the distribution so that it integrates to1
. It can still be sampled (proportionally), but returned density values will reflect the unnormalized values.If
enable_sampling
is set toFalse
, the implementation will not construct the hierarchy needed for sample warping, which saves memory in case this functionality is not needed (e.g. if only the interpolation ineval()
is used). In this case,sample()
andinvert()
can still be called without triggering undefined behavior, but they will not return meaningful results.- Parameter
data
(numpy.ndarray[numpy.float32]): no description available
- Parameter
param_values
(List[List[float][0]]): no description available
- Parameter
normalize
(bool): no description available
- Parameter
enable_sampling
(bool): no description available
- Parameter
- eval(self, pos, param=[], active=True)#
Evaluate the density at position
pos
. The distribution is parameterized byparam
if applicable.- Parameter
pos
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array0f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- invert(self, sample, param=[], active=True)#
Inverse of the mapping implemented in
sample()
- Parameter
sample
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array0f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → Tuple[
mitsuba.Point2f
, drjit.llvm.ad.Float]: no description available
- Parameter
- sample(self, sample, param=[], active=True)#
Given a uniformly distributed 2D sample, draw a sample from the distribution (parameterized by
param
if applicable)Returns the warped sample and associated probability density.
- Parameter
sample
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array0f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → Tuple[
mitsuba.Point2f
, drjit.llvm.ad.Float]: no description available
- Parameter
- class mitsuba.Hierarchical2D1#
Implements a hierarchical sample warping scheme for 2D distributions with linear interpolation and an optional dependence on additional parameters
This class takes a rectangular floating point array as input and constructs internal data structures to efficiently map uniform variates from the unit square
[0, 1]^2
to a function on[0, 1]^2
that linearly interpolates the input array.The mapping is constructed from a sequence of
log2(max(res))
hierarchical sample warping steps, whereres
is the input array resolution. It is bijective and generally very well-behaved (i.e. low distortion), which makes it a good choice for structured point sets such as the Halton or Sobol sequence.The implementation also supports conditional distributions, i.e. 2D distributions that depend on an arbitrary number of parameters (indicated via the
Dimension
template parameter).In this case, the input array should have dimensions
N0 x N1 x ... x Nn x res.y() x res.x()
(where the last dimension is contiguous in memory), and theparam_res
should be set to{ N0, N1, ..., Nn }
, andparam_values
should contain the parameter values where the distribution is discretized. Linear interpolation is used when sampling or evaluating the distribution for in-between parameter values.- Remark:
The Python API exposes explicitly instantiated versions of this class named Hierarchical2D0, Hierarchical2D1, and Hierarchical2D2 for data that depends on 0, 1, and 2 parameters, respectively.
- __init__(self, data, param_values, normalize=True, build_hierarchy=True)#
Construct a hierarchical sample warping scheme for floating point data of resolution
size
.param_res
andparam_values
are only needed for conditional distributions (see the text describing the Hierarchical2D class).If
normalize
is set toFalse
, the implementation will not re- scale the distribution so that it integrates to1
. It can still be sampled (proportionally), but returned density values will reflect the unnormalized values.If
enable_sampling
is set toFalse
, the implementation will not construct the hierarchy needed for sample warping, which saves memory in case this functionality is not needed (e.g. if only the interpolation ineval()
is used). In this case,sample()
andinvert()
can still be called without triggering undefined behavior, but they will not return meaningful results.- Parameter
data
(numpy.ndarray[numpy.float32]): no description available
- Parameter
param_values
(List[List[float][1]]): no description available
- Parameter
normalize
(bool): no description available
- Parameter
build_hierarchy
(bool): no description available
- Parameter
- eval(self, pos, param=[0.0], active=True)#
Evaluate the density at position
pos
. The distribution is parameterized byparam
if applicable.- Parameter
pos
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array1f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- invert(self, sample, param=[0.0], active=True)#
Inverse of the mapping implemented in
sample()
- Parameter
sample
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array1f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → Tuple[
mitsuba.Point2f
, drjit.llvm.ad.Float]: no description available
- Parameter
- sample(self, sample, param=[0.0], active=True)#
Given a uniformly distributed 2D sample, draw a sample from the distribution (parameterized by
param
if applicable)Returns the warped sample and associated probability density.
- Parameter
sample
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array1f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → Tuple[
mitsuba.Point2f
, drjit.llvm.ad.Float]: no description available
- Parameter
- class mitsuba.Hierarchical2D2#
Implements a hierarchical sample warping scheme for 2D distributions with linear interpolation and an optional dependence on additional parameters
This class takes a rectangular floating point array as input and constructs internal data structures to efficiently map uniform variates from the unit square
[0, 1]^2
to a function on[0, 1]^2
that linearly interpolates the input array.The mapping is constructed from a sequence of
log2(max(res))
hierarchical sample warping steps, whereres
is the input array resolution. It is bijective and generally very well-behaved (i.e. low distortion), which makes it a good choice for structured point sets such as the Halton or Sobol sequence.The implementation also supports conditional distributions, i.e. 2D distributions that depend on an arbitrary number of parameters (indicated via the
Dimension
template parameter).In this case, the input array should have dimensions
N0 x N1 x ... x Nn x res.y() x res.x()
(where the last dimension is contiguous in memory), and theparam_res
should be set to{ N0, N1, ..., Nn }
, andparam_values
should contain the parameter values where the distribution is discretized. Linear interpolation is used when sampling or evaluating the distribution for in-between parameter values.- Remark:
The Python API exposes explicitly instantiated versions of this class named Hierarchical2D0, Hierarchical2D1, and Hierarchical2D2 for data that depends on 0, 1, and 2 parameters, respectively.
- __init__(self, data, param_values, normalize=True, build_hierarchy=True)#
Construct a hierarchical sample warping scheme for floating point data of resolution
size
.param_res
andparam_values
are only needed for conditional distributions (see the text describing the Hierarchical2D class).If
normalize
is set toFalse
, the implementation will not re- scale the distribution so that it integrates to1
. It can still be sampled (proportionally), but returned density values will reflect the unnormalized values.If
enable_sampling
is set toFalse
, the implementation will not construct the hierarchy needed for sample warping, which saves memory in case this functionality is not needed (e.g. if only the interpolation ineval()
is used). In this case,sample()
andinvert()
can still be called without triggering undefined behavior, but they will not return meaningful results.- Parameter
data
(numpy.ndarray[numpy.float32]): no description available
- Parameter
param_values
(List[List[float][2]]): no description available
- Parameter
normalize
(bool): no description available
- Parameter
build_hierarchy
(bool): no description available
- Parameter
- eval(self, pos, param=[0.0, 0.0], active=True)#
Evaluate the density at position
pos
. The distribution is parameterized byparam
if applicable.- Parameter
pos
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array2f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- invert(self, sample, param=[0.0, 0.0], active=True)#
Inverse of the mapping implemented in
sample()
- Parameter
sample
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array2f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → Tuple[
mitsuba.Point2f
, drjit.llvm.ad.Float]: no description available
- Parameter
- sample(self, sample, param=[0.0, 0.0], active=True)#
Given a uniformly distributed 2D sample, draw a sample from the distribution (parameterized by
param
if applicable)Returns the warped sample and associated probability density.
- Parameter
sample
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array2f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → Tuple[
mitsuba.Point2f
, drjit.llvm.ad.Float]: no description available
- Parameter
- class mitsuba.Hierarchical2D3#
Implements a hierarchical sample warping scheme for 2D distributions with linear interpolation and an optional dependence on additional parameters
This class takes a rectangular floating point array as input and constructs internal data structures to efficiently map uniform variates from the unit square
[0, 1]^2
to a function on[0, 1]^2
that linearly interpolates the input array.The mapping is constructed from a sequence of
log2(max(res))
hierarchical sample warping steps, whereres
is the input array resolution. It is bijective and generally very well-behaved (i.e. low distortion), which makes it a good choice for structured point sets such as the Halton or Sobol sequence.The implementation also supports conditional distributions, i.e. 2D distributions that depend on an arbitrary number of parameters (indicated via the
Dimension
template parameter).In this case, the input array should have dimensions
N0 x N1 x ... x Nn x res.y() x res.x()
(where the last dimension is contiguous in memory), and theparam_res
should be set to{ N0, N1, ..., Nn }
, andparam_values
should contain the parameter values where the distribution is discretized. Linear interpolation is used when sampling or evaluating the distribution for in-between parameter values.- Remark:
The Python API exposes explicitly instantiated versions of this class named Hierarchical2D0, Hierarchical2D1, and Hierarchical2D2 for data that depends on 0, 1, and 2 parameters, respectively.
- __init__(self, data, param_values, normalize=True, build_hierarchy=True)#
Construct a hierarchical sample warping scheme for floating point data of resolution
size
.param_res
andparam_values
are only needed for conditional distributions (see the text describing the Hierarchical2D class).If
normalize
is set toFalse
, the implementation will not re- scale the distribution so that it integrates to1
. It can still be sampled (proportionally), but returned density values will reflect the unnormalized values.If
enable_sampling
is set toFalse
, the implementation will not construct the hierarchy needed for sample warping, which saves memory in case this functionality is not needed (e.g. if only the interpolation ineval()
is used). In this case,sample()
andinvert()
can still be called without triggering undefined behavior, but they will not return meaningful results.- Parameter
data
(numpy.ndarray[numpy.float32]): no description available
- Parameter
param_values
(List[List[float][3]]): no description available
- Parameter
normalize
(bool): no description available
- Parameter
build_hierarchy
(bool): no description available
- Parameter
- eval(self, pos, param=[0.0, 0.0, 0.0], active=True)#
Evaluate the density at position
pos
. The distribution is parameterized byparam
if applicable.- Parameter
pos
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array3f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- invert(self, sample, param=[0.0, 0.0, 0.0], active=True)#
Inverse of the mapping implemented in
sample()
- Parameter
sample
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array3f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → Tuple[
mitsuba.Point2f
, drjit.llvm.ad.Float]: no description available
- Parameter
- sample(self, sample, param=[0.0, 0.0, 0.0], active=True)#
Given a uniformly distributed 2D sample, draw a sample from the distribution (parameterized by
param
if applicable)Returns the warped sample and associated probability density.
- Parameter
sample
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array3f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → Tuple[
mitsuba.Point2f
, drjit.llvm.ad.Float]: no description available
- Parameter
- class mitsuba.MarginalContinuous2D0#
Implements a marginal sample warping scheme for 2D distributions with linear interpolation and an optional dependence on additional parameters
This class takes a rectangular floating point array as input and constructs internal data structures to efficiently map uniform variates from the unit square
[0, 1]^2
to a function on[0, 1]^2
that linearly interpolates the input array.The mapping is constructed via the inversion method, which is applied to a marginal distribution over rows, followed by a conditional distribution over columns.
The implementation also supports conditional distributions, i.e. 2D distributions that depend on an arbitrary number of parameters (indicated via the
Dimension
template parameter).In this case, the input array should have dimensions
N0 x N1 x ... x Nn x res.y() x res.x()
(where the last dimension is contiguous in memory), and theparam_res
should be set to{ N0, N1, ..., Nn }
, andparam_values
should contain the parameter values where the distribution is discretized. Linear interpolation is used when sampling or evaluating the distribution for in-between parameter values.There are two variants of
Marginal2D:
whenContinuous=false
, discrete marginal/conditional distributions are used to select a bilinear bilinear patch, followed by a continuous sampling step that chooses a specific position inside the patch. WhenContinuous=true
, continuous marginal/conditional distributions are used instead, and the second step is no longer needed. The latter scheme requires more computation and memory accesses but produces an overall smoother mapping.- Remark:
The Python API exposes explicitly instantiated versions of this class named
MarginalDiscrete2D0
toMarginalDiscrete2D3
andMarginalContinuous2D0
toMarginalContinuous2D3
for data that depends on 0 to 3 parameters.
- __init__(self, data, param_values=[], normalize=True, enable_sampling=True)#
Construct a marginal sample warping scheme for floating point data of resolution
size
.param_res
andparam_values
are only needed for conditional distributions (see the text describing the Marginal2D class).If
normalize
is set toFalse
, the implementation will not re- scale the distribution so that it integrates to1
. It can still be sampled (proportionally), but returned density values will reflect the unnormalized values.If
enable_sampling
is set toFalse
, the implementation will not construct the cdf needed for sample warping, which saves memory in case this functionality is not needed (e.g. if only the interpolation ineval()
is used).- Parameter
data
(numpy.ndarray[numpy.float32]): no description available
- Parameter
param_values
(List[List[float][0]]): no description available
- Parameter
normalize
(bool): no description available
- Parameter
enable_sampling
(bool): no description available
- Parameter
- eval(self, pos, param=[], active=True)#
Evaluate the density at position
pos
. The distribution is parameterized byparam
if applicable.- Parameter
pos
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array0f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- invert(self, sample, param=[], active=True)#
Inverse of the mapping implemented in
sample()
- Parameter
sample
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array0f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → Tuple[
mitsuba.Point2f
, drjit.llvm.ad.Float]: no description available
- Parameter
- sample(self, sample, param=[], active=True)#
Given a uniformly distributed 2D sample, draw a sample from the distribution (parameterized by
param
if applicable)Returns the warped sample and associated probability density.
- Parameter
sample
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array0f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → Tuple[
mitsuba.Point2f
, drjit.llvm.ad.Float]: no description available
- Parameter
- class mitsuba.MarginalContinuous2D1#
Implements a marginal sample warping scheme for 2D distributions with linear interpolation and an optional dependence on additional parameters
This class takes a rectangular floating point array as input and constructs internal data structures to efficiently map uniform variates from the unit square
[0, 1]^2
to a function on[0, 1]^2
that linearly interpolates the input array.The mapping is constructed via the inversion method, which is applied to a marginal distribution over rows, followed by a conditional distribution over columns.
The implementation also supports conditional distributions, i.e. 2D distributions that depend on an arbitrary number of parameters (indicated via the
Dimension
template parameter).In this case, the input array should have dimensions
N0 x N1 x ... x Nn x res.y() x res.x()
(where the last dimension is contiguous in memory), and theparam_res
should be set to{ N0, N1, ..., Nn }
, andparam_values
should contain the parameter values where the distribution is discretized. Linear interpolation is used when sampling or evaluating the distribution for in-between parameter values.There are two variants of
Marginal2D:
whenContinuous=false
, discrete marginal/conditional distributions are used to select a bilinear bilinear patch, followed by a continuous sampling step that chooses a specific position inside the patch. WhenContinuous=true
, continuous marginal/conditional distributions are used instead, and the second step is no longer needed. The latter scheme requires more computation and memory accesses but produces an overall smoother mapping.- Remark:
The Python API exposes explicitly instantiated versions of this class named
MarginalDiscrete2D0
toMarginalDiscrete2D3
andMarginalContinuous2D0
toMarginalContinuous2D3
for data that depends on 0 to 3 parameters.
- __init__(self, data, param_values, normalize=True, build_hierarchy=True)#
Construct a marginal sample warping scheme for floating point data of resolution
size
.param_res
andparam_values
are only needed for conditional distributions (see the text describing the Marginal2D class).If
normalize
is set toFalse
, the implementation will not re- scale the distribution so that it integrates to1
. It can still be sampled (proportionally), but returned density values will reflect the unnormalized values.If
enable_sampling
is set toFalse
, the implementation will not construct the cdf needed for sample warping, which saves memory in case this functionality is not needed (e.g. if only the interpolation ineval()
is used).- Parameter
data
(numpy.ndarray[numpy.float32]): no description available
- Parameter
param_values
(List[List[float][1]]): no description available
- Parameter
normalize
(bool): no description available
- Parameter
build_hierarchy
(bool): no description available
- Parameter
- eval(self, pos, param=[0.0], active=True)#
Evaluate the density at position
pos
. The distribution is parameterized byparam
if applicable.- Parameter
pos
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array1f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- invert(self, sample, param=[0.0], active=True)#
Inverse of the mapping implemented in
sample()
- Parameter
sample
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array1f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → Tuple[
mitsuba.Point2f
, drjit.llvm.ad.Float]: no description available
- Parameter
- sample(self, sample, param=[0.0], active=True)#
Given a uniformly distributed 2D sample, draw a sample from the distribution (parameterized by
param
if applicable)Returns the warped sample and associated probability density.
- Parameter
sample
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array1f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → Tuple[
mitsuba.Point2f
, drjit.llvm.ad.Float]: no description available
- Parameter
- class mitsuba.MarginalContinuous2D2#
Implements a marginal sample warping scheme for 2D distributions with linear interpolation and an optional dependence on additional parameters
This class takes a rectangular floating point array as input and constructs internal data structures to efficiently map uniform variates from the unit square
[0, 1]^2
to a function on[0, 1]^2
that linearly interpolates the input array.The mapping is constructed via the inversion method, which is applied to a marginal distribution over rows, followed by a conditional distribution over columns.
The implementation also supports conditional distributions, i.e. 2D distributions that depend on an arbitrary number of parameters (indicated via the
Dimension
template parameter).In this case, the input array should have dimensions
N0 x N1 x ... x Nn x res.y() x res.x()
(where the last dimension is contiguous in memory), and theparam_res
should be set to{ N0, N1, ..., Nn }
, andparam_values
should contain the parameter values where the distribution is discretized. Linear interpolation is used when sampling or evaluating the distribution for in-between parameter values.There are two variants of
Marginal2D:
whenContinuous=false
, discrete marginal/conditional distributions are used to select a bilinear bilinear patch, followed by a continuous sampling step that chooses a specific position inside the patch. WhenContinuous=true
, continuous marginal/conditional distributions are used instead, and the second step is no longer needed. The latter scheme requires more computation and memory accesses but produces an overall smoother mapping.- Remark:
The Python API exposes explicitly instantiated versions of this class named
MarginalDiscrete2D0
toMarginalDiscrete2D3
andMarginalContinuous2D0
toMarginalContinuous2D3
for data that depends on 0 to 3 parameters.
- __init__(self, data, param_values, normalize=True, build_hierarchy=True)#
Construct a marginal sample warping scheme for floating point data of resolution
size
.param_res
andparam_values
are only needed for conditional distributions (see the text describing the Marginal2D class).If
normalize
is set toFalse
, the implementation will not re- scale the distribution so that it integrates to1
. It can still be sampled (proportionally), but returned density values will reflect the unnormalized values.If
enable_sampling
is set toFalse
, the implementation will not construct the cdf needed for sample warping, which saves memory in case this functionality is not needed (e.g. if only the interpolation ineval()
is used).- Parameter
data
(numpy.ndarray[numpy.float32]): no description available
- Parameter
param_values
(List[List[float][2]]): no description available
- Parameter
normalize
(bool): no description available
- Parameter
build_hierarchy
(bool): no description available
- Parameter
- eval(self, pos, param=[0.0, 0.0], active=True)#
Evaluate the density at position
pos
. The distribution is parameterized byparam
if applicable.- Parameter
pos
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array2f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- invert(self, sample, param=[0.0, 0.0], active=True)#
Inverse of the mapping implemented in
sample()
- Parameter
sample
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array2f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → Tuple[
mitsuba.Point2f
, drjit.llvm.ad.Float]: no description available
- Parameter
- sample(self, sample, param=[0.0, 0.0], active=True)#
Given a uniformly distributed 2D sample, draw a sample from the distribution (parameterized by
param
if applicable)Returns the warped sample and associated probability density.
- Parameter
sample
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array2f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → Tuple[
mitsuba.Point2f
, drjit.llvm.ad.Float]: no description available
- Parameter
- class mitsuba.MarginalContinuous2D3#
Implements a marginal sample warping scheme for 2D distributions with linear interpolation and an optional dependence on additional parameters
This class takes a rectangular floating point array as input and constructs internal data structures to efficiently map uniform variates from the unit square
[0, 1]^2
to a function on[0, 1]^2
that linearly interpolates the input array.The mapping is constructed via the inversion method, which is applied to a marginal distribution over rows, followed by a conditional distribution over columns.
The implementation also supports conditional distributions, i.e. 2D distributions that depend on an arbitrary number of parameters (indicated via the
Dimension
template parameter).In this case, the input array should have dimensions
N0 x N1 x ... x Nn x res.y() x res.x()
(where the last dimension is contiguous in memory), and theparam_res
should be set to{ N0, N1, ..., Nn }
, andparam_values
should contain the parameter values where the distribution is discretized. Linear interpolation is used when sampling or evaluating the distribution for in-between parameter values.There are two variants of
Marginal2D:
whenContinuous=false
, discrete marginal/conditional distributions are used to select a bilinear bilinear patch, followed by a continuous sampling step that chooses a specific position inside the patch. WhenContinuous=true
, continuous marginal/conditional distributions are used instead, and the second step is no longer needed. The latter scheme requires more computation and memory accesses but produces an overall smoother mapping.- Remark:
The Python API exposes explicitly instantiated versions of this class named
MarginalDiscrete2D0
toMarginalDiscrete2D3
andMarginalContinuous2D0
toMarginalContinuous2D3
for data that depends on 0 to 3 parameters.
- __init__(self, data, param_values, normalize=True, build_hierarchy=True)#
Construct a marginal sample warping scheme for floating point data of resolution
size
.param_res
andparam_values
are only needed for conditional distributions (see the text describing the Marginal2D class).If
normalize
is set toFalse
, the implementation will not re- scale the distribution so that it integrates to1
. It can still be sampled (proportionally), but returned density values will reflect the unnormalized values.If
enable_sampling
is set toFalse
, the implementation will not construct the cdf needed for sample warping, which saves memory in case this functionality is not needed (e.g. if only the interpolation ineval()
is used).- Parameter
data
(numpy.ndarray[numpy.float32]): no description available
- Parameter
param_values
(List[List[float][3]]): no description available
- Parameter
normalize
(bool): no description available
- Parameter
build_hierarchy
(bool): no description available
- Parameter
- eval(self, pos, param=[0.0, 0.0, 0.0], active=True)#
Evaluate the density at position
pos
. The distribution is parameterized byparam
if applicable.- Parameter
pos
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array3f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- invert(self, sample, param=[0.0, 0.0, 0.0], active=True)#
Inverse of the mapping implemented in
sample()
- Parameter
sample
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array3f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → Tuple[
mitsuba.Point2f
, drjit.llvm.ad.Float]: no description available
- Parameter
- sample(self, sample, param=[0.0, 0.0, 0.0], active=True)#
Given a uniformly distributed 2D sample, draw a sample from the distribution (parameterized by
param
if applicable)Returns the warped sample and associated probability density.
- Parameter
sample
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array3f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → Tuple[
mitsuba.Point2f
, drjit.llvm.ad.Float]: no description available
- Parameter
- class mitsuba.MarginalDiscrete2D0#
Implements a marginal sample warping scheme for 2D distributions with linear interpolation and an optional dependence on additional parameters
This class takes a rectangular floating point array as input and constructs internal data structures to efficiently map uniform variates from the unit square
[0, 1]^2
to a function on[0, 1]^2
that linearly interpolates the input array.The mapping is constructed via the inversion method, which is applied to a marginal distribution over rows, followed by a conditional distribution over columns.
The implementation also supports conditional distributions, i.e. 2D distributions that depend on an arbitrary number of parameters (indicated via the
Dimension
template parameter).In this case, the input array should have dimensions
N0 x N1 x ... x Nn x res.y() x res.x()
(where the last dimension is contiguous in memory), and theparam_res
should be set to{ N0, N1, ..., Nn }
, andparam_values
should contain the parameter values where the distribution is discretized. Linear interpolation is used when sampling or evaluating the distribution for in-between parameter values.There are two variants of
Marginal2D:
whenContinuous=false
, discrete marginal/conditional distributions are used to select a bilinear bilinear patch, followed by a continuous sampling step that chooses a specific position inside the patch. WhenContinuous=true
, continuous marginal/conditional distributions are used instead, and the second step is no longer needed. The latter scheme requires more computation and memory accesses but produces an overall smoother mapping.- Remark:
The Python API exposes explicitly instantiated versions of this class named
MarginalDiscrete2D0
toMarginalDiscrete2D3
andMarginalContinuous2D0
toMarginalContinuous2D3
for data that depends on 0 to 3 parameters.
- __init__(self, data, param_values=[], normalize=True, enable_sampling=True)#
Construct a marginal sample warping scheme for floating point data of resolution
size
.param_res
andparam_values
are only needed for conditional distributions (see the text describing the Marginal2D class).If
normalize
is set toFalse
, the implementation will not re- scale the distribution so that it integrates to1
. It can still be sampled (proportionally), but returned density values will reflect the unnormalized values.If
enable_sampling
is set toFalse
, the implementation will not construct the cdf needed for sample warping, which saves memory in case this functionality is not needed (e.g. if only the interpolation ineval()
is used).- Parameter
data
(numpy.ndarray[numpy.float32]): no description available
- Parameter
param_values
(List[List[float][0]]): no description available
- Parameter
normalize
(bool): no description available
- Parameter
enable_sampling
(bool): no description available
- Parameter
- eval(self, pos, param=[], active=True)#
Evaluate the density at position
pos
. The distribution is parameterized byparam
if applicable.- Parameter
pos
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array0f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- invert(self, sample, param=[], active=True)#
Inverse of the mapping implemented in
sample()
- Parameter
sample
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array0f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → Tuple[
mitsuba.Point2f
, drjit.llvm.ad.Float]: no description available
- Parameter
- sample(self, sample, param=[], active=True)#
Given a uniformly distributed 2D sample, draw a sample from the distribution (parameterized by
param
if applicable)Returns the warped sample and associated probability density.
- Parameter
sample
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array0f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → Tuple[
mitsuba.Point2f
, drjit.llvm.ad.Float]: no description available
- Parameter
- class mitsuba.MarginalDiscrete2D1#
Implements a marginal sample warping scheme for 2D distributions with linear interpolation and an optional dependence on additional parameters
This class takes a rectangular floating point array as input and constructs internal data structures to efficiently map uniform variates from the unit square
[0, 1]^2
to a function on[0, 1]^2
that linearly interpolates the input array.The mapping is constructed via the inversion method, which is applied to a marginal distribution over rows, followed by a conditional distribution over columns.
The implementation also supports conditional distributions, i.e. 2D distributions that depend on an arbitrary number of parameters (indicated via the
Dimension
template parameter).In this case, the input array should have dimensions
N0 x N1 x ... x Nn x res.y() x res.x()
(where the last dimension is contiguous in memory), and theparam_res
should be set to{ N0, N1, ..., Nn }
, andparam_values
should contain the parameter values where the distribution is discretized. Linear interpolation is used when sampling or evaluating the distribution for in-between parameter values.There are two variants of
Marginal2D:
whenContinuous=false
, discrete marginal/conditional distributions are used to select a bilinear bilinear patch, followed by a continuous sampling step that chooses a specific position inside the patch. WhenContinuous=true
, continuous marginal/conditional distributions are used instead, and the second step is no longer needed. The latter scheme requires more computation and memory accesses but produces an overall smoother mapping.- Remark:
The Python API exposes explicitly instantiated versions of this class named
MarginalDiscrete2D0
toMarginalDiscrete2D3
andMarginalContinuous2D0
toMarginalContinuous2D3
for data that depends on 0 to 3 parameters.
- __init__(self, data, param_values, normalize=True, build_hierarchy=True)#
Construct a marginal sample warping scheme for floating point data of resolution
size
.param_res
andparam_values
are only needed for conditional distributions (see the text describing the Marginal2D class).If
normalize
is set toFalse
, the implementation will not re- scale the distribution so that it integrates to1
. It can still be sampled (proportionally), but returned density values will reflect the unnormalized values.If
enable_sampling
is set toFalse
, the implementation will not construct the cdf needed for sample warping, which saves memory in case this functionality is not needed (e.g. if only the interpolation ineval()
is used).- Parameter
data
(numpy.ndarray[numpy.float32]): no description available
- Parameter
param_values
(List[List[float][1]]): no description available
- Parameter
normalize
(bool): no description available
- Parameter
build_hierarchy
(bool): no description available
- Parameter
- eval(self, pos, param=[0.0], active=True)#
Evaluate the density at position
pos
. The distribution is parameterized byparam
if applicable.- Parameter
pos
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array1f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- invert(self, sample, param=[0.0], active=True)#
Inverse of the mapping implemented in
sample()
- Parameter
sample
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array1f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → Tuple[
mitsuba.Point2f
, drjit.llvm.ad.Float]: no description available
- Parameter
- sample(self, sample, param=[0.0], active=True)#
Given a uniformly distributed 2D sample, draw a sample from the distribution (parameterized by
param
if applicable)Returns the warped sample and associated probability density.
- Parameter
sample
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array1f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → Tuple[
mitsuba.Point2f
, drjit.llvm.ad.Float]: no description available
- Parameter
- class mitsuba.MarginalDiscrete2D2#
Implements a marginal sample warping scheme for 2D distributions with linear interpolation and an optional dependence on additional parameters
This class takes a rectangular floating point array as input and constructs internal data structures to efficiently map uniform variates from the unit square
[0, 1]^2
to a function on[0, 1]^2
that linearly interpolates the input array.The mapping is constructed via the inversion method, which is applied to a marginal distribution over rows, followed by a conditional distribution over columns.
The implementation also supports conditional distributions, i.e. 2D distributions that depend on an arbitrary number of parameters (indicated via the
Dimension
template parameter).In this case, the input array should have dimensions
N0 x N1 x ... x Nn x res.y() x res.x()
(where the last dimension is contiguous in memory), and theparam_res
should be set to{ N0, N1, ..., Nn }
, andparam_values
should contain the parameter values where the distribution is discretized. Linear interpolation is used when sampling or evaluating the distribution for in-between parameter values.There are two variants of
Marginal2D:
whenContinuous=false
, discrete marginal/conditional distributions are used to select a bilinear bilinear patch, followed by a continuous sampling step that chooses a specific position inside the patch. WhenContinuous=true
, continuous marginal/conditional distributions are used instead, and the second step is no longer needed. The latter scheme requires more computation and memory accesses but produces an overall smoother mapping.- Remark:
The Python API exposes explicitly instantiated versions of this class named
MarginalDiscrete2D0
toMarginalDiscrete2D3
andMarginalContinuous2D0
toMarginalContinuous2D3
for data that depends on 0 to 3 parameters.
- __init__(self, data, param_values, normalize=True, build_hierarchy=True)#
Construct a marginal sample warping scheme for floating point data of resolution
size
.param_res
andparam_values
are only needed for conditional distributions (see the text describing the Marginal2D class).If
normalize
is set toFalse
, the implementation will not re- scale the distribution so that it integrates to1
. It can still be sampled (proportionally), but returned density values will reflect the unnormalized values.If
enable_sampling
is set toFalse
, the implementation will not construct the cdf needed for sample warping, which saves memory in case this functionality is not needed (e.g. if only the interpolation ineval()
is used).- Parameter
data
(numpy.ndarray[numpy.float32]): no description available
- Parameter
param_values
(List[List[float][2]]): no description available
- Parameter
normalize
(bool): no description available
- Parameter
build_hierarchy
(bool): no description available
- Parameter
- eval(self, pos, param=[0.0, 0.0], active=True)#
Evaluate the density at position
pos
. The distribution is parameterized byparam
if applicable.- Parameter
pos
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array2f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- invert(self, sample, param=[0.0, 0.0], active=True)#
Inverse of the mapping implemented in
sample()
- Parameter
sample
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array2f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → Tuple[
mitsuba.Point2f
, drjit.llvm.ad.Float]: no description available
- Parameter
- sample(self, sample, param=[0.0, 0.0], active=True)#
Given a uniformly distributed 2D sample, draw a sample from the distribution (parameterized by
param
if applicable)Returns the warped sample and associated probability density.
- Parameter
sample
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array2f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → Tuple[
mitsuba.Point2f
, drjit.llvm.ad.Float]: no description available
- Parameter
- class mitsuba.MarginalDiscrete2D3#
Implements a marginal sample warping scheme for 2D distributions with linear interpolation and an optional dependence on additional parameters
This class takes a rectangular floating point array as input and constructs internal data structures to efficiently map uniform variates from the unit square
[0, 1]^2
to a function on[0, 1]^2
that linearly interpolates the input array.The mapping is constructed via the inversion method, which is applied to a marginal distribution over rows, followed by a conditional distribution over columns.
The implementation also supports conditional distributions, i.e. 2D distributions that depend on an arbitrary number of parameters (indicated via the
Dimension
template parameter).In this case, the input array should have dimensions
N0 x N1 x ... x Nn x res.y() x res.x()
(where the last dimension is contiguous in memory), and theparam_res
should be set to{ N0, N1, ..., Nn }
, andparam_values
should contain the parameter values where the distribution is discretized. Linear interpolation is used when sampling or evaluating the distribution for in-between parameter values.There are two variants of
Marginal2D:
whenContinuous=false
, discrete marginal/conditional distributions are used to select a bilinear bilinear patch, followed by a continuous sampling step that chooses a specific position inside the patch. WhenContinuous=true
, continuous marginal/conditional distributions are used instead, and the second step is no longer needed. The latter scheme requires more computation and memory accesses but produces an overall smoother mapping.- Remark:
The Python API exposes explicitly instantiated versions of this class named
MarginalDiscrete2D0
toMarginalDiscrete2D3
andMarginalContinuous2D0
toMarginalContinuous2D3
for data that depends on 0 to 3 parameters.
- __init__(self, data, param_values, normalize=True, build_hierarchy=True)#
Construct a marginal sample warping scheme for floating point data of resolution
size
.param_res
andparam_values
are only needed for conditional distributions (see the text describing the Marginal2D class).If
normalize
is set toFalse
, the implementation will not re- scale the distribution so that it integrates to1
. It can still be sampled (proportionally), but returned density values will reflect the unnormalized values.If
enable_sampling
is set toFalse
, the implementation will not construct the cdf needed for sample warping, which saves memory in case this functionality is not needed (e.g. if only the interpolation ineval()
is used).- Parameter
data
(numpy.ndarray[numpy.float32]): no description available
- Parameter
param_values
(List[List[float][3]]): no description available
- Parameter
normalize
(bool): no description available
- Parameter
build_hierarchy
(bool): no description available
- Parameter
- eval(self, pos, param=[0.0, 0.0, 0.0], active=True)#
Evaluate the density at position
pos
. The distribution is parameterized byparam
if applicable.- Parameter
pos
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array3f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- invert(self, sample, param=[0.0, 0.0, 0.0], active=True)#
Inverse of the mapping implemented in
sample()
- Parameter
sample
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array3f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → Tuple[
mitsuba.Point2f
, drjit.llvm.ad.Float]: no description available
- Parameter
- sample(self, sample, param=[0.0, 0.0, 0.0], active=True)#
Given a uniformly distributed 2D sample, draw a sample from the distribution (parameterized by
param
if applicable)Returns the warped sample and associated probability density.
- Parameter
sample
(drjit.llvm.ad.Array2f): no description available
- Parameter
param
(drjit.llvm.ad.Array3f): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → Tuple[
mitsuba.Point2f
, drjit.llvm.ad.Float]: no description available
- Parameter
Math#
- mitsuba.math.RayEpsilon: float = 8.940696716308594e-05#
- mitsuba.math.ShadowEpsilon: float = 0.0008940696716308594#
- mitsuba.math.chi2(arg0, arg1, arg2)#
Compute the Chi^2 statistic and degrees of freedom of the given arrays while pooling low-valued entries together
Given a list of observations counts (
obs[i]
) and expected observation counts (exp[i]
), this function accumulates the Chi^2 statistic, that is,(obs-exp)^2 / exp
for each element0, ..., n-1
.Minimum expected cell frequency. The Chi^2 test statistic is not useful when when the expected frequency in a cell is low (e.g. less than 5), because normality assumptions break down in this case. Therefore, the implementation will merge such low-frequency cells when they fall below the threshold specified here. Specifically, low-valued cells with
exp[i] < pool_threshold
are pooled into larger groups that are above the threshold before their contents are added to the Chi^2 statistic.The function returns the statistic value, degrees of freedom, below- threshold entries and resulting number of pooled regions.
- Parameter
arg0
(drjit.scalar.ArrayXf64): no description available
- Parameter
arg1
(drjit.scalar.ArrayXf64): no description available
- Parameter
arg2
(float): no description available
- Returns → Tuple[float, int, int, int]:
no description available
- Parameter
- mitsuba.math.find_interval(size, pred)#
Find an interval in an ordered set
This function performs a binary search to find an index
i
such thatpred(i)
isTrue
andpred(i+1)
isFalse
, wherepred
is a user-specified predicate that monotonically decreases over this range (i.e. max oneTrue
->False
transition).The predicate will be evaluated exactly <tt>floor(log2(size)) + 1<tt> times. Note that the template parameter
Index
is automatically inferred from the supplied predicate, which takes an index or an index vector of typeIndex
as input argument and can (optionally) take a mask argument as well. In the vectorized case, each vector lane can use different predicate. Whenpred
isFalse
for all entries, the function returns0
, and when it isTrue
for all cases, it returns <tt>size-2<tt>.The main use case of this function is to locate an interval (i, i+1) in an ordered list.
float my_list[] = { 1, 1.5f, 4.f, ... }; UInt32 index = find_interval( sizeof(my_list) / sizeof(float), [](UInt32 index, dr::mask_t<UInt32> active) { return dr::gather<Float>(my_list, index, active) < x; } );
- Parameter
size
(int): no description available
- Parameter
pred
(Callable[[drjit.llvm.ad.UInt], drjit.llvm.ad.Bool]): no description available
- Returns → drjit.llvm.ad.UInt:
no description available
- Parameter
- mitsuba.math.is_power_of_two(arg0)#
Check whether the provided integer is a power of two
- Parameter
arg0
(int): no description available
- Returns → bool:
no description available
- Parameter
- mitsuba.math.legendre_p(overloaded)#
- legendre_p(l, x)#
Evaluate the l-th Legendre polynomial using recurrence
- Parameter
l
(int): no description available
- Parameter
x
(drjit.llvm.ad.Float): no description available
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- legendre_p(l, m, x)#
Evaluate the l-th Legendre polynomial using recurrence
- Parameter
l
(int): no description available
- Parameter
m
(int): no description available
- Parameter
x
(drjit.llvm.ad.Float): no description available
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- mitsuba.math.legendre_pd(l, x)#
Evaluate the l-th Legendre polynomial and its derivative using recurrence
- Parameter
l
(int): no description available
- Parameter
x
(drjit.llvm.ad.Float): no description available
- Returns → Tuple[drjit.llvm.ad.Float, drjit.llvm.ad.Float]:
no description available
- Parameter
- mitsuba.math.legendre_pd_diff(l, x)#
Evaluate the function legendre_pd(l+1, x) - legendre_pd(l-1, x)
- Parameter
l
(int): no description available
- Parameter
x
(drjit.llvm.ad.Float): no description available
- Returns → Tuple[drjit.llvm.ad.Float, drjit.llvm.ad.Float]:
no description available
- Parameter
- mitsuba.math.linear_to_srgb(arg0)#
Applies the sRGB gamma curve to the given argument.
- Parameter
arg0
(drjit.llvm.ad.Float): no description available
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- mitsuba.math.morton_decode2(m)#
- Parameter
m
(drjit.llvm.ad.UInt): no description available
- Returns → drjit.llvm.ad.Array2u:
no description available
- Parameter
- mitsuba.math.morton_decode3(m)#
- Parameter
m
(drjit.llvm.ad.UInt): no description available
- Returns → drjit.llvm.ad.Array3u:
no description available
- Parameter
- mitsuba.math.morton_encode2(v)#
- Parameter
v
(drjit.llvm.ad.Array2u): no description available
- Returns → drjit.llvm.ad.UInt:
no description available
- Parameter
- mitsuba.math.morton_encode3(v)#
- Parameter
v
(drjit.llvm.ad.Array3u): no description available
- Returns → drjit.llvm.ad.UInt:
no description available
- Parameter
- mitsuba.math.rlgamma()#
Regularized lower incomplete gamma function based on CEPHES
- mitsuba.math.round_to_power_of_two(arg0)#
Round an unsigned integer to the next integer power of two
- Parameter
arg0
(int): no description available
- Returns → int:
no description available
- Parameter
- mitsuba.math.solve_quadratic(a, b, c)#
Solve a quadratic equation of the form a*x^2 + b*x + c = 0.
- Parameter
a
(drjit.llvm.ad.Float): no description available
- Parameter
b
(drjit.llvm.ad.Float): no description available
- Parameter
c
(drjit.llvm.ad.Float): no description available
- Returns → Tuple[drjit.llvm.ad.Bool, drjit.llvm.ad.Float, drjit.llvm.ad.Float]:
True
if a solution could be found
- Parameter
- mitsuba.math.srgb_to_linear(arg0)#
Applies the inverse sRGB gamma curve to the given argument.
- Parameter
arg0
(drjit.llvm.ad.Float): no description available
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- mitsuba.math.ulpdiff(arg0, arg1)#
Compare the difference in ULPs between a reference value and another given floating point number
- Parameter
arg0
(float): no description available
- Parameter
arg1
(float): no description available
- Returns → float:
no description available
- Parameter
- mitsuba.spline.eval_1d(overloaded)#
- eval_1d(min, max, values, x)#
Evaluate a cubic spline interpolant of a uniformly sampled 1D function
The implementation relies on Catmull-Rom splines, i.e. it uses finite differences to approximate the derivatives at the endpoints of each spline segment.
- Template parameter
Extrapolate
: Extrapolate values when
x
is out of range? (default:False
)- Parameter
min
(float): Position of the first node
- Parameter
max
(float): Position of the last node
- Parameter
values
(numpy.ndarray[numpy.float32]): Array containing
size
regularly spaced evaluations in the range [min
,max
] of the approximated function.- Parameter
size
: Denotes the size of the
values
array- Parameter
x
(drjit.llvm.ad.Float): Evaluation point
- Remark:
The Python API lacks the
size
parameter, which is inferred automatically from the size of the input array.- Remark:
The Python API provides a vectorized version which evaluates the function for many arguments
x
.- Returns → drjit.llvm.ad.Float:
The interpolated value or zero when
Extrapolate=false
andx
lies outside of [min
,max
]
- Template parameter
- eval_1d(nodes, values, x)#
Evaluate a cubic spline interpolant of a non-uniformly sampled 1D function
The implementation relies on Catmull-Rom splines, i.e. it uses finite differences to approximate the derivatives at the endpoints of each spline segment.
- Template parameter
Extrapolate
: Extrapolate values when
x
is out of range? (default:False
)- Parameter
nodes
(numpy.ndarray[numpy.float32]): Array containing
size
non-uniformly spaced values denoting positions the where the function to be interpolated was evaluated. They must be provided in increasing order.- Parameter
values
(numpy.ndarray[numpy.float32]): Array containing function evaluations matched to the entries of
nodes
.- Parameter
size
: Denotes the size of the
nodes
andvalues
array- Parameter
x
(drjit.llvm.ad.Float): Evaluation point
- Remark:
The Python API lacks the
size
parameter, which is inferred automatically from the size of the input array- Remark:
The Python API provides a vectorized version which evaluates the function for many arguments
x
.- Returns → drjit.llvm.ad.Float:
The interpolated value or zero when
Extrapolate=false
andx
lies outside of a [min
,max
]
- Template parameter
- mitsuba.spline.eval_2d(nodes1, nodes2, values, x, y)#
Evaluate a cubic spline interpolant of a uniformly sampled 2D function
This implementation relies on a tensor product of Catmull-Rom splines, i.e. it uses finite differences to approximate the derivatives for each dimension at the endpoints of spline patches.
- Template parameter
Extrapolate
: Extrapolate values when
p
is out of range? (default:False
)- Parameter
nodes1
(numpy.ndarray[numpy.float32]): Arrays containing
size1
non-uniformly spaced values denoting positions the where the function to be interpolated was evaluated on theX
axis (in increasing order)- Parameter
size1
: Denotes the size of the
nodes1
array- Parameter
nodes
: Arrays containing
size2
non-uniformly spaced values denoting positions the where the function to be interpolated was evaluated on theY
axis (in increasing order)- Parameter
size2
: Denotes the size of the
nodes2
array- Parameter
values
(numpy.ndarray[numpy.float32]): A 2D floating point array of
size1*size2
cells containing irregularly spaced evaluations of the function to be interpolated. Consecutive entries of this array correspond to increments in theX
coordinate.- Parameter
x
(drjit.llvm.ad.Float): X
coordinate of the evaluation point- Parameter
y
(drjit.llvm.ad.Float): Y
coordinate of the evaluation point- Remark:
The Python API lacks the
size1
andsize2
parameters, which are inferred automatically from the size of the input arrays.- Parameter
nodes2
(numpy.ndarray[numpy.float32]): no description available
- Returns → drjit.llvm.ad.Float:
The interpolated value or zero when
Extrapolate=false``tt> and ``(x,y)
lies outside of the node range
- Template parameter
- mitsuba.spline.eval_spline(f0, f1, d0, d1, t)#
Compute the definite integral and derivative of a cubic spline that is parameterized by the function values and derivatives at the endpoints of the interval
[0, 1]
.- Parameter
f0
(float): The function value at the left position
- Parameter
f1
(float): The function value at the right position
- Parameter
d0
(float): The function derivative at the left position
- Parameter
d1
(float): The function derivative at the right position
- Parameter
t
(float): The parameter variable
- Returns → float:
The interpolated function value at
t
- Parameter
- mitsuba.spline.eval_spline_d(f0, f1, d0, d1, t)#
Compute the value and derivative of a cubic spline that is parameterized by the function values and derivatives of the interval
[0, 1]
.- Parameter
f0
(float): The function value at the left position
- Parameter
f1
(float): The function value at the right position
- Parameter
d0
(float): The function derivative at the left position
- Parameter
d1
(float): The function derivative at the right position
- Parameter
t
(float): The parameter variable
- Returns → Tuple[float, float]:
The interpolated function value and its derivative at
t
- Parameter
- mitsuba.spline.eval_spline_i(f0, f1, d0, d1, t)#
Compute the definite integral and value of a cubic spline that is parameterized by the function values and derivatives of the interval
[0, 1]
.- Parameter
f0
(float): The function value at the left position
- Parameter
f1
(float): The function value at the right position
- Parameter
d0
(float): The function derivative at the left position
- Parameter
d1
(float): The function derivative at the right position
- Parameter
t
(float): no description available
- Returns → Tuple[float, float]:
The definite integral and the interpolated function value at
t
- Parameter
- mitsuba.spline.eval_spline_weights(overloaded)#
- eval_spline_weights(min, max, size, x)#
Compute weights to perform a spline-interpolated lookup on a uniformly sampled 1D function.
The implementation relies on Catmull-Rom splines, i.e. it uses finite differences to approximate the derivatives at the endpoints of each spline segment. The resulting weights are identical those internally used by sample_1d().
- Template parameter
Extrapolate
: Extrapolate values when
x
is out of range? (default:False
)- Parameter
min
(float): Position of the first node
- Parameter
max
(float): Position of the last node
- Parameter
size
(int): Denotes the number of function samples
- Parameter
x
(drjit.llvm.ad.Float): Evaluation point
- Parameter
weights
: Pointer to a weight array of size 4 that will be populated
- Remark:
In the Python API, the
offset
andweights
parameters are returned as the second and third elements of a triple.- Returns → Tuple[drjit.llvm.ad.Bool, drjit.llvm.ad.Int, List[drjit.llvm.ad.Float]]:
A boolean set to
True
on success andFalse
whenExtrapolate=false
andx
lies outside of [min
,max
] and an offset into the function samples associated with weights[0]
- Template parameter
- eval_spline_weights(nodes, x)#
Compute weights to perform a spline-interpolated lookup on a non-uniformly sampled 1D function.
The implementation relies on Catmull-Rom splines, i.e. it uses finite differences to approximate the derivatives at the endpoints of each spline segment. The resulting weights are identical those internally used by sample_1d().
- Template parameter
Extrapolate
: Extrapolate values when
x
is out of range? (default:False
)- Parameter
nodes
(numpy.ndarray[numpy.float32]): Array containing
size
non-uniformly spaced values denoting positions the where the function to be interpolated was evaluated. They must be provided in increasing order.- Parameter
size
: Denotes the size of the
nodes
array- Parameter
x
(drjit.llvm.ad.Float): Evaluation point
- Parameter
weights
: Pointer to a weight array of size 4 that will be populated
- Remark:
The Python API lacks the
size
parameter, which is inferred automatically from the size of the input array. Theoffset
andweights
parameters are returned as the second and third elements of a triple.- Returns → Tuple[drjit.llvm.ad.Bool, drjit.llvm.ad.Int, List[drjit.llvm.ad.Float]]:
A boolean set to
True
on success andFalse
whenExtrapolate=false
andx
lies outside of [min
,max
] and an offset into the function samples associated with weights[0]
- Template parameter
- mitsuba.spline.integrate_1d(overloaded)#
- integrate_1d(min, max, values)#
Computes a prefix sum of integrals over segments of a uniformly sampled 1D Catmull-Rom spline interpolant
This is useful for sampling spline segments as part of an importance sampling scheme (in conjunction with sample_1d)
- Parameter
min
(float): Position of the first node
- Parameter
max
(float): Position of the last node
- Parameter
values
(numpy.ndarray[numpy.float32]): Array containing
size
regularly spaced evaluations in the range [min
,max
] of the approximated function.- Parameter
size
: Denotes the size of the
values
array- Parameter
out
: An array with
size
entries, which will be used to store the prefix sum- Remark:
The Python API lacks the
size
andout
parameters. The former is inferred automatically from the size of the input array, andout
is returned as a list.- Returns → drjit.scalar.ArrayXf:
no description available
- Parameter
- integrate_1d(nodes, values)#
Computes a prefix sum of integrals over segments of a non-uniformly sampled 1D Catmull-Rom spline interpolant
This is useful for sampling spline segments as part of an importance sampling scheme (in conjunction with sample_1d)
- Parameter
nodes
(numpy.ndarray[numpy.float32]): Array containing
size
non-uniformly spaced values denoting positions the where the function to be interpolated was evaluated. They must be provided in increasing order.- Parameter
values
(numpy.ndarray[numpy.float32]): Array containing function evaluations matched to the entries of
nodes
.- Parameter
size
: Denotes the size of the
values
array- Parameter
out
: An array with
size
entries, which will be used to store the prefix sum- Remark:
The Python API lacks the
size
andout
parameters. The former is inferred automatically from the size of the input array, andout
is returned as a list.- Returns → drjit.scalar.ArrayXf:
no description available
- Parameter
- mitsuba.spline.invert_1d(overloaded)#
- invert_1d(min, max_, values, y, eps=9.999999974752427e-07)#
Invert a cubic spline interpolant of a uniformly sampled 1D function. The spline interpolant must be monotonically increasing.
- Parameter
min
(float): Position of the first node
- Parameter
max
: Position of the last node
- Parameter
values
(numpy.ndarray[numpy.float32]): Array containing
size
regularly spaced evaluations in the range [min
,max
] of the approximated function.- Parameter
size
: Denotes the size of the
values
array- Parameter
y
(drjit.llvm.ad.Float): Input parameter for the inversion
- Parameter
eps
(float): Error tolerance (default: 1e-6f)
- Returns → drjit.llvm.ad.Float:
The spline parameter
t
such thateval_1d(..., t)=y
- Parameter
max_
(float): no description available
- Parameter
- invert_1d(nodes, values, y, eps=9.999999974752427e-07)#
Invert a cubic spline interpolant of a non-uniformly sampled 1D function. The spline interpolant must be monotonically increasing.
- Parameter
nodes
(numpy.ndarray[numpy.float32]): Array containing
size
non-uniformly spaced values denoting positions the where the function to be interpolated was evaluated. They must be provided in increasing order.- Parameter
values
(numpy.ndarray[numpy.float32]): Array containing function evaluations matched to the entries of
nodes
.- Parameter
size
: Denotes the size of the
values
array- Parameter
y
(drjit.llvm.ad.Float): Input parameter for the inversion
- Parameter
eps
(float): Error tolerance (default: 1e-6f)
- Returns → drjit.llvm.ad.Float:
The spline parameter
t
such thateval_1d(..., t)=y
- Parameter
- mitsuba.spline.sample_1d(overloaded)#
- sample_1d(min, max, values, cdf, sample, eps=9.999999974752427e-07)#
Importance sample a segment of a uniformly sampled 1D Catmull-Rom spline interpolant
- Parameter
min
(float): Position of the first node
- Parameter
max
(float): Position of the last node
- Parameter
values
(numpy.ndarray[numpy.float32]): Array containing
size
regularly spaced evaluations in the range [min
,max
] of the approximated function.- Parameter
cdf
(numpy.ndarray[numpy.float32]): Array containing a cumulative distribution function computed by integrate_1d().
- Parameter
size
: Denotes the size of the
values
array- Parameter
sample
(drjit.llvm.ad.Float): A uniformly distributed random sample in the interval
[0,1]
- Parameter
eps
(float): Error tolerance (default: 1e-6f)
- Returns → Tuple[drjit.llvm.ad.Float, drjit.llvm.ad.Float, drjit.llvm.ad.Float]:
1. The sampled position 2. The value of the spline evaluated at the sampled position 3. The probability density at the sampled position (which only differs from item 2. when the function does not integrate to one)
- Parameter
- sample_1d(nodes, values, cdf, sample, eps=9.999999974752427e-07)#
Importance sample a segment of a non-uniformly sampled 1D Catmull- Rom spline interpolant
- Parameter
nodes
(numpy.ndarray[numpy.float32]): Array containing
size
non-uniformly spaced values denoting positions the where the function to be interpolated was evaluated. They must be provided in increasing order.- Parameter
values
(numpy.ndarray[numpy.float32]): Array containing function evaluations matched to the entries of
nodes
.- Parameter
cdf
(numpy.ndarray[numpy.float32]): Array containing a cumulative distribution function computed by integrate_1d().
- Parameter
size
: Denotes the size of the
values
array- Parameter
sample
(drjit.llvm.ad.Float): A uniformly distributed random sample in the interval
[0,1]
- Parameter
eps
(float): Error tolerance (default: 1e-6f)
- Returns → Tuple[drjit.llvm.ad.Float, drjit.llvm.ad.Float, drjit.llvm.ad.Float]:
1. The sampled position 2. The value of the spline evaluated at the sampled position 3. The probability density at the sampled position (which only differs from item 2. when the function does not integrate to one)
- Parameter
- mitsuba.quad.chebyshev(n)#
Computes the Chebyshev nodes, i.e. the roots of the Chebyshev polynomials of the first kind
The output array contains positions on the interval \([-1, 1]\).
- Parameter
n
(int): Desired number of points
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- mitsuba.quad.composite_simpson(n)#
Computes the nodes and weights of a composite Simpson quadrature rule with the given number of evaluations.
Integration is over the interval \([-1, 1]\), which will be split into \((n-1) / 2\) sub-intervals with overlapping endpoints. A 3-point Simpson rule is applied per interval, which is exact for polynomials of degree three or less.
- Parameter
n
(int): Desired number of evaluation points. Must be an odd number bigger than 3.
- Returns → Tuple[drjit.llvm.ad.Float, drjit.llvm.ad.Float]:
A tuple (nodes, weights) storing the nodes and weights of the quadrature rule.
- Parameter
- mitsuba.quad.composite_simpson_38(n)#
Computes the nodes and weights of a composite Simpson 3/8 quadrature rule with the given number of evaluations.
Integration is over the interval \([-1, 1]\), which will be split into \((n-1) / 3\) sub-intervals with overlapping endpoints. A 4-point Simpson rule is applied per interval, which is exact for polynomials of degree four or less.
- Parameter
n
(int): Desired number of evaluation points. Must be an odd number bigger than 3.
- Returns → Tuple[drjit.llvm.ad.Float, drjit.llvm.ad.Float]:
A tuple (nodes, weights) storing the nodes and weights of the quadrature rule.
- Parameter
- mitsuba.quad.gauss_legendre(n)#
Computes the nodes and weights of a Gauss-Legendre quadrature (aka “Gaussian quadrature”) rule with the given number of evaluations.
Integration is over the interval \([-1, 1]\). Gauss-Legendre quadrature maximizes the order of exactly integrable polynomials achieves this up to degree \(2n-1\) (where \(n\) is the number of function evaluations).
This method is numerically well-behaved until about \(n=200\) and then becomes progressively less accurate. It is generally not a good idea to go much higher—in any case, a composite or adaptive integration scheme will be superior for large \(n\).
- Parameter
n
(int): Desired number of evaluation points
- Returns → Tuple[drjit.llvm.ad.Float, drjit.llvm.ad.Float]:
A tuple (nodes, weights) storing the nodes and weights of the quadrature rule.
- Parameter
- mitsuba.quad.gauss_lobatto(n)#
Computes the nodes and weights of a Gauss-Lobatto quadrature rule with the given number of evaluations.
Integration is over the interval \([-1, 1]\). Gauss-Lobatto quadrature is preferable to Gauss-Legendre quadrature whenever the endpoints of the integration domain should explicitly be included. It maximizes the order of exactly integrable polynomials subject to this constraint and achieves this up to degree \(2n-3\) (where \(n\) is the number of function evaluations).
This method is numerically well-behaved until about \(n=200\) and then becomes progressively less accurate. It is generally not a good idea to go much higher—in any case, a composite or adaptive integration scheme will be superior for large \(n\).
- Parameter
n
(int): Desired number of evaluation points
- Returns → Tuple[drjit.llvm.ad.Float, drjit.llvm.ad.Float]:
A tuple (nodes, weights) storing the nodes and weights of the quadrature rule.
- Parameter
- class mitsuba.RadicalInverse#
Base class:
mitsuba.Object
Efficient implementation of a radical inverse function with prime bases including scrambled versions.
This class is used to implement Halton and Hammersley sequences for QMC integration in Mitsuba.
- __init__(self, max_base=8161, scramble=-1)#
- Parameter
max_base
(int): no description available
- Parameter
scramble
(int): no description available
- Parameter
- base(self, arg0)#
Returns the n-th prime base used by the sequence
These prime numbers are used as bases in the radical inverse function implementation.
- Parameter
arg0
(int): no description available
- Returns → int:
no description available
- Parameter
- bases(self)#
Return the number of prime bases for which precomputed tables are available
- Returns → int:
no description available
- eval(self, base_index, index)#
Calculate the radical inverse function
This function is used as a building block to construct Halton and Hammersley sequences. Roughly, it computes a b-ary representation of the input value
index
, mirrors it along the decimal point, and returns the resulting fractional value. The implementation here uses prime numbers forb
.- Parameter
base_index
(int): Selects the n-th prime that is used as a base when computing the radical inverse function (0 corresponds to 2, 1->3, 2->5, etc.). The value specified here must be between 0 and 1023.
- Parameter
index
(drjit.llvm.ad.UInt64): Denotes the index that should be mapped through the radical inverse function
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- inverse_permutation(self, arg0)#
Return the inverse permutation corresponding to the given prime number basis
- Parameter
arg0
(int): no description available
- Returns → int:
no description available
- Parameter
- permutation(self, arg0)#
Return the permutation corresponding to the given prime number basis
- Parameter
arg0
(int): no description available
- Returns → numpy.ndarray[numpy.uint16]:
no description available
- Parameter
- scramble(self)#
Return the original scramble value
- Returns → int:
no description available
- mitsuba.radical_inverse_2(index, scramble)#
Van der Corput radical inverse in base 2
- Parameter
index
(drjit.llvm.ad.UInt): no description available
- Parameter
scramble
(drjit.llvm.ad.UInt): no description available
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- mitsuba.coordinate_system(n)#
Complete the set {a} to an orthonormal basis {a, b, c}
- Parameter
n
(mitsuba.Vector3f
): no description available
- Returns → Tuple[
mitsuba.Vector3f
,mitsuba.Vector3f
]: no description available
- Parameter
- mitsuba.reflect(overloaded)#
- reflect(wi)#
Reflection in local coordinates
- Parameter
wi
(mitsuba.Vector3f
): no description available
- Returns →
mitsuba.Vector3f
: no description available
- Parameter
- reflect(wi, m)#
Reflect
wi
with respect to a given surface normal- Parameter
wi
(mitsuba.Vector3f
): no description available
- Parameter
m
(mitsuba.Normal3f
): no description available
- Returns →
mitsuba.Vector3f
: no description available
- Parameter
- mitsuba.refract(overloaded)#
- refract(wi, cos_theta_t, eta_ti)#
Refraction in local coordinates
The ‘cos_theta_t’ and ‘eta_ti’ parameters are given by the last two tuple entries returned by the fresnel and fresnel_polarized functions.
- Parameter
wi
(mitsuba.Vector3f
): no description available
- Parameter
cos_theta_t
(drjit.llvm.ad.Float): no description available
- Parameter
eta_ti
(drjit.llvm.ad.Float): no description available
- Returns →
mitsuba.Vector3f
: no description available
- Parameter
- refract(wi, m, cos_theta_t, eta_ti)#
Refract
wi
with respect to a given surface normal- Parameter
wi
(mitsuba.Vector3f
): Direction to refract
- Parameter
m
(mitsuba.Normal3f
): Surface normal
- Parameter
cos_theta_t
(drjit.llvm.ad.Float): Cosine of the angle between the normal the transmitted ray, as computed e.g. by fresnel.
- Parameter
eta_ti
(drjit.llvm.ad.Float): Relative index of refraction (transmitted / incident)
- Returns →
mitsuba.Vector3f
: no description available
- Parameter
- mitsuba.fresnel(cos_theta_i, eta)#
Calculates the unpolarized Fresnel reflection coefficient at a planar interface between two dielectrics
- Parameter
cos_theta_i
(drjit.llvm.ad.Float): Cosine of the angle between the surface normal and the incident ray
- Parameter
eta
(drjit.llvm.ad.Float): Relative refractive index of the interface. A value greater than 1.0 means that the surface normal is pointing into the region of lower density.
- Returns → Tuple[drjit.llvm.ad.Float, drjit.llvm.ad.Float, drjit.llvm.ad.Float, drjit.llvm.ad.Float]:
A tuple (F, cos_theta_t, eta_it, eta_ti) consisting of
F Fresnel reflection coefficient.
cos_theta_t Cosine of the angle between the surface normal and the transmitted ray
eta_it Relative index of refraction in the direction of travel.
eta_ti Reciprocal of the relative index of refraction in the direction of travel. This also happens to be equal to the scale factor that must be applied to the X and Y component of the refracted direction.
- Parameter
- mitsuba.fresnel_conductor(cos_theta_i, eta)#
Calculates the unpolarized Fresnel reflection coefficient at a planar interface of a conductor, i.e. a surface with a complex-valued relative index of refraction
- Remark:
The implementation assumes that cos_theta_i > 0, i.e. light enters from outside of the conducting layer (generally a reasonable assumption unless very thin layers are being simulated)
- Parameter
cos_theta_i
(drjit.llvm.ad.Float): Cosine of the angle between the surface normal and the incident ray
- Parameter
eta
(drjit.llvm.ad.Complex2f): Relative refractive index (complex-valued)
- Returns → drjit.llvm.ad.Float:
The unpolarized Fresnel reflection coefficient.
- mitsuba.fresnel_diffuse_reflectance(eta)#
Computes the diffuse unpolarized Fresnel reflectance of a dielectric material (sometimes referred to as “Fdr”).
This value quantifies what fraction of diffuse incident illumination will, on average, be reflected at a dielectric material boundary
- Parameter
eta
(drjit.llvm.ad.Float): Relative refraction coefficient
- Returns → drjit.llvm.ad.Float:
F, the unpolarized Fresnel coefficient.
- Parameter
- mitsuba.fresnel_polarized(cos_theta_i, eta)#
Calculates the polarized Fresnel reflection coefficient at a planar interface between two dielectrics or conductors. Returns complex values encoding the amplitude and phase shift of the s- and p-polarized waves.
This is the most general version, which subsumes all others (at the cost of transcendental function evaluations in the complex-valued arithmetic)
- Parameter
cos_theta_i
(drjit.llvm.ad.Float): Cosine of the angle between the surface normal and the incident ray
- Parameter
eta
(drjit.llvm.ad.Complex2f): Complex-valued relative refractive index of the interface. In the real case, a value greater than 1.0 case means that the surface normal points into the region of lower density.
- Returns → Tuple[drjit.llvm.ad.Complex2f, drjit.llvm.ad.Complex2f, drjit.llvm.ad.Float, drjit.llvm.ad.Complex2f, drjit.llvm.ad.Complex2f]:
A tuple (a_s, a_p, cos_theta_t, eta_it, eta_ti) consisting of
a_s Perpendicularly polarized wave amplitude and phase shift.
a_p Parallel polarized wave amplitude and phase shift.
cos_theta_t Cosine of the angle between the surface normal and the transmitted ray. Zero in the case of total internal reflection.
eta_it Relative index of refraction in the direction of travel
eta_ti Reciprocal of the relative index of refraction in the direction of travel. In the real-valued case, this also happens to be equal to the scale factor that must be applied to the X and Y component of the refracted direction.
- Parameter
- mitsuba.perspective_projection(film_size, crop_size, crop_offset, fov_x, near_clip, far_clip)#
Helper function to create a perspective projection transformation matrix
- Parameter
film_size
(mitsuba.ScalarVector2i
): no description available
- Parameter
crop_size
(mitsuba.ScalarVector2i
): no description available
- Parameter
crop_offset
(mitsuba.ScalarVector2i
): no description available
- Parameter
fov_x
(drjit.llvm.ad.Float): no description available
- Parameter
near_clip
(drjit.llvm.ad.Float): no description available
- Parameter
far_clip
(drjit.llvm.ad.Float): no description available
- Returns →
mitsuba.Transform4f
: no description available
- Parameter
Random#
- mitsuba.sample_tea_32(overloaded)#
- sample_tea_32(v0, v1, rounds=4)#
Generate fast and reasonably good pseudorandom numbers using the Tiny Encryption Algorithm (TEA) by David Wheeler and Roger Needham.
For details, refer to “GPU Random Numbers via the Tiny Encryption Algorithm” by Fahad Zafar, Marc Olano, and Aaron Curtis.
- Parameter
v0
(int): First input value to be encrypted (could be the sample index)
- Parameter
v1
(int): Second input value to be encrypted (e.g. the requested random number dimension)
- Parameter
rounds
(int): How many rounds should be executed? The default for random number generation is 4.
- Returns → Tuple[int, int]:
Two uniformly distributed 32-bit integers
- Parameter
- sample_tea_32(v0, v1, rounds=4)#
Generate fast and reasonably good pseudorandom numbers using the Tiny Encryption Algorithm (TEA) by David Wheeler and Roger Needham.
For details, refer to “GPU Random Numbers via the Tiny Encryption Algorithm” by Fahad Zafar, Marc Olano, and Aaron Curtis.
- Parameter
v0
(drjit.llvm.ad.UInt): First input value to be encrypted (could be the sample index)
- Parameter
v1
(drjit.llvm.ad.UInt): Second input value to be encrypted (e.g. the requested random number dimension)
- Parameter
rounds
(int): How many rounds should be executed? The default for random number generation is 4.
- Returns → Tuple[drjit.llvm.ad.UInt, drjit.llvm.ad.UInt]:
Two uniformly distributed 32-bit integers
- Parameter
- mitsuba.sample_tea_64(overloaded)#
- sample_tea_64(v0, v1, rounds=4)#
Generate fast and reasonably good pseudorandom numbers using the Tiny Encryption Algorithm (TEA) by David Wheeler and Roger Needham.
For details, refer to “GPU Random Numbers via the Tiny Encryption Algorithm” by Fahad Zafar, Marc Olano, and Aaron Curtis.
- Parameter
v0
(int): First input value to be encrypted (could be the sample index)
- Parameter
v1
(int): Second input value to be encrypted (e.g. the requested random number dimension)
- Parameter
rounds
(int): How many rounds should be executed? The default for random number generation is 4.
- Returns → int:
A uniformly distributed 64-bit integer
- Parameter
- sample_tea_64(v0, v1, rounds=4)#
Generate fast and reasonably good pseudorandom numbers using the Tiny Encryption Algorithm (TEA) by David Wheeler and Roger Needham.
For details, refer to “GPU Random Numbers via the Tiny Encryption Algorithm” by Fahad Zafar, Marc Olano, and Aaron Curtis.
- Parameter
v0
(drjit.llvm.ad.UInt): First input value to be encrypted (could be the sample index)
- Parameter
v1
(drjit.llvm.ad.UInt): Second input value to be encrypted (e.g. the requested random number dimension)
- Parameter
rounds
(int): How many rounds should be executed? The default for random number generation is 4.
- Returns → drjit.llvm.ad.UInt64:
A uniformly distributed 64-bit integer
- Parameter
- mitsuba.sample_tea_float()#
sample_tea_float64(*args, **kwargs) Overloaded function.
sample_tea_float64(v0: int, v1: int, rounds: int = 4) -> float
Generate fast and reasonably good pseudorandom numbers using the Tiny Encryption Algorithm (TEA) by David Wheeler and Roger Needham.
This function uses sample_tea to return double precision floating point numbers on the interval
[0, 1)
- Parameter
v0
: First input value to be encrypted (could be the sample index)
- Parameter
v1
: Second input value to be encrypted (e.g. the requested random number dimension)
- Parameter
rounds
: How many rounds should be executed? The default for random number generation is 4.
- Returns:
A uniformly distributed floating point number on the interval
[0, 1)
sample_tea_float64(v0: drjit.llvm.ad.UInt, v1: drjit.llvm.ad.UInt, rounds: int = 4) -> drjit.llvm.ad.Float64
Generate fast and reasonably good pseudorandom numbers using the Tiny Encryption Algorithm (TEA) by David Wheeler and Roger Needham.
This function uses sample_tea to return double precision floating point numbers on the interval
[0, 1)
- Parameter
v0
: First input value to be encrypted (could be the sample index)
- Parameter
v1
: Second input value to be encrypted (e.g. the requested random number dimension)
- Parameter
rounds
: How many rounds should be executed? The default for random number generation is 4.
- Returns:
A uniformly distributed floating point number on the interval
[0, 1)
- mitsuba.sample_tea_float32(overloaded)#
- sample_tea_float32(v0, v1, rounds=4)#
Generate fast and reasonably good pseudorandom numbers using the Tiny Encryption Algorithm (TEA) by David Wheeler and Roger Needham.
This function uses sample_tea to return single precision floating point numbers on the interval
[0, 1)
- Parameter
v0
(int): First input value to be encrypted (could be the sample index)
- Parameter
v1
(int): Second input value to be encrypted (e.g. the requested random number dimension)
- Parameter
rounds
(int): How many rounds should be executed? The default for random number generation is 4.
- Returns → float:
A uniformly distributed floating point number on the interval
[0, 1)
- Parameter
- sample_tea_float32(v0, v1, rounds=4)#
Generate fast and reasonably good pseudorandom numbers using the Tiny Encryption Algorithm (TEA) by David Wheeler and Roger Needham.
This function uses sample_tea to return single precision floating point numbers on the interval
[0, 1)
- Parameter
v0
(drjit.llvm.ad.UInt): First input value to be encrypted (could be the sample index)
- Parameter
v1
(drjit.llvm.ad.UInt): Second input value to be encrypted (e.g. the requested random number dimension)
- Parameter
rounds
(int): How many rounds should be executed? The default for random number generation is 4.
- Returns → drjit.llvm.ad.Float:
A uniformly distributed floating point number on the interval
[0, 1)
- Parameter
- mitsuba.sample_tea_float64(overloaded)#
- sample_tea_float64(v0, v1, rounds=4)#
Generate fast and reasonably good pseudorandom numbers using the Tiny Encryption Algorithm (TEA) by David Wheeler and Roger Needham.
This function uses sample_tea to return double precision floating point numbers on the interval
[0, 1)
- Parameter
v0
(int): First input value to be encrypted (could be the sample index)
- Parameter
v1
(int): Second input value to be encrypted (e.g. the requested random number dimension)
- Parameter
rounds
(int): How many rounds should be executed? The default for random number generation is 4.
- Returns → float:
A uniformly distributed floating point number on the interval
[0, 1)
- Parameter
- sample_tea_float64(v0, v1, rounds=4)#
Generate fast and reasonably good pseudorandom numbers using the Tiny Encryption Algorithm (TEA) by David Wheeler and Roger Needham.
This function uses sample_tea to return double precision floating point numbers on the interval
[0, 1)
- Parameter
v0
(drjit.llvm.ad.UInt): First input value to be encrypted (could be the sample index)
- Parameter
v1
(drjit.llvm.ad.UInt): Second input value to be encrypted (e.g. the requested random number dimension)
- Parameter
rounds
(int): How many rounds should be executed? The default for random number generation is 4.
- Returns → drjit.llvm.ad.Float64:
A uniformly distributed floating point number on the interval
[0, 1)
- Parameter
- class mitsuba.PCG32#
- __init__(self, size=1, initstate=9600629759793949339, initseq=15726070495360670683)#
- Parameter
size
(int): no description available
- Parameter
initstate
(drjit.llvm.ad.UInt64): no description available
- Parameter
initseq
(drjit.llvm.ad.UInt64): no description available
- Parameter
- __init__(self, arg0)#
- Parameter
arg0
(drjit.llvm.ad.PCG32): no description available
- Parameter
- next_float32(overloaded)#
- next_float32(self)#
- Returns → drjit.llvm.ad.Float:
no description available
- next_float32(self, arg0)#
- Parameter
arg0
(drjit.llvm.ad.Bool): no description available
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
- next_float64(overloaded)#
- next_float64(self)#
- Returns → drjit.llvm.ad.Float64:
no description available
- next_float64(self, arg0)#
- Parameter
arg0
(drjit.llvm.ad.Bool): no description available
- Returns → drjit.llvm.ad.Float64:
no description available
- Parameter
- next_uint32(overloaded)#
- next_uint32(self)#
- Returns → drjit.llvm.ad.UInt:
no description available
- next_uint32(self, arg0)#
- Parameter
arg0
(drjit.llvm.ad.Bool): no description available
- Returns → drjit.llvm.ad.UInt:
no description available
- Parameter
- next_uint32_bounded(self, bound, mask=True)#
- Parameter
bound
(int): no description available
- Parameter
mask
(drjit.llvm.ad.Bool): no description available
- Returns → drjit.llvm.ad.UInt:
no description available
- Parameter
- next_uint64(overloaded)#
- next_uint64(self)#
- Returns → drjit.llvm.ad.UInt64:
no description available
- next_uint64(self, arg0)#
- Parameter
arg0
(drjit.llvm.ad.Bool): no description available
- Returns → drjit.llvm.ad.UInt64:
no description available
- Parameter
- next_uint64_bounded(self, bound, mask=True)#
- Parameter
bound
(int): no description available
- Parameter
mask
(drjit.llvm.ad.Bool): no description available
- Returns → drjit.llvm.ad.UInt64:
no description available
- Parameter
- seed(self, size=1, initstate=9600629759793949339, initseq=15726070495360670683)#
- Parameter
size
(int): no description available
- Parameter
initstate
(drjit.llvm.ad.UInt64): no description available
- Parameter
initseq
(drjit.llvm.ad.UInt64): no description available
- Returns → None:
no description available
- Parameter
- mitsuba.permute(value, size, seed, rounds=4)#
Generate pseudorandom permutation vector using a shuffling network
This algorithm repeatedly invokes sample_tea_32() internally and has O(log2(sample_count)) complexity. It only supports permutation vectors, whose lengths are a power of 2.
- Parameter
index
: Input index to be permuted
- Parameter
size
(int): Length of the permutation vector
- Parameter
seed
(drjit.llvm.ad.UInt): Seed value used as second input to the Tiny Encryption Algorithm. Can be used to generate different permutation vectors.
- Parameter
rounds
(int): How many rounds should be executed by the Tiny Encryption Algorithm? The default is 2.
- Parameter
value
(drjit.llvm.ad.UInt): no description available
- Returns → drjit.llvm.ad.UInt:
The index corresponding to the input index in the pseudorandom permutation vector.
- Parameter
- mitsuba.permute_kensler(i, l, p, active=True)#
Generate pseudorandom permutation vector using the algorithm described in Pixar’s technical memo “Correlated Multi-Jittered Sampling”:
https://graphics.pixar.com/library/MultiJitteredSampling/
Unlike permute, this function supports permutation vectors of any length.
- Parameter
index
: Input index to be mapped
- Parameter
sample_count
: Length of the permutation vector
- Parameter
seed
: Seed value used as second input to the Tiny Encryption Algorithm. Can be used to generate different permutation vectors.
- Parameter
i
(drjit.llvm.ad.UInt): no description available
- Parameter
l
(int): no description available
- Parameter
p
(drjit.llvm.ad.UInt): no description available
- Parameter
active
(drjit.llvm.ad.Bool): Mask to specify active lanes.
- Returns → drjit.llvm.ad.UInt:
The index corresponding to the input index in the pseudorandom permutation vector.
- Parameter
- mitsuba.sobol_2(index, scramble)#
Sobol’ radical inverse in base 2
- Parameter
index
(drjit.llvm.ad.UInt): no description available
- Parameter
scramble
(drjit.llvm.ad.UInt): no description available
- Returns → drjit.llvm.ad.Float:
no description available
- Parameter
Log#
- class mitsuba.LogLevel#
Available Log message types
Members:
- Trace#
- Debug#
Trace message, for extremely verbose debugging
- Info#
Debug message, usually turned off
- Warn#
More relevant debug / information message
- Error#
Warning message
- __init__(self, value)#
- Parameter
value
(int): no description available
- Parameter
- property name#
- class mitsuba.Logger#
Base class:
mitsuba.Object
Responsible for processing log messages
Upon receiving a log message, the Logger class invokes a Formatter to convert it into a human-readable form. Following that, it sends this information to every registered Appender.
- __init__(self, arg0)#
Construct a new logger with the given minimum log level
- Parameter
arg0
(mitsuba.LogLevel
): no description available
- Parameter
- add_appender(self, arg0)#
Add an appender to this logger
- Parameter
arg0
(mitsuba.Appender
): no description available
- Returns → None:
no description available
- Parameter
- appender(self, arg0)#
Return one of the appenders
- Parameter
arg0
(int): no description available
- Returns →
mitsuba.Appender
: no description available
- Parameter
- appender_count(self)#
Return the number of registered appenders
- Returns → int:
no description available
- clear_appenders(self)#
Remove all appenders from this logger
- Returns → None:
no description available
- error_level(self)#
Return the current error level
- Returns →
mitsuba.LogLevel
: no description available
- Returns →
- formatter(self)#
Return the logger’s formatter implementation
- Returns →
mitsuba.Formatter
: no description available
- Returns →
- log_level(self)#
Return the current log level
- Returns →
mitsuba.LogLevel
: no description available
- Returns →
- log_progress(self, progress, name, formatted, eta, ptr=None)#
Process a progress message
- Parameter
progress
(float): Percentage value in [0, 100]
- Parameter
name
(str): Title of the progress message
- Parameter
formatted
(str): Formatted string representation of the message
- Parameter
eta
(str): Estimated time until 100% is reached.
- Parameter
ptr
(capsule): Custom pointer payload. This is used to express the context of a progress message. When rendering a scene, it will usually contain a pointer to the associated
RenderJob
.- Returns → None:
no description available
- Parameter
- read_log(self)#
Return the contents of the log file as a string
Throws a runtime exception upon failure
- Returns → str:
no description available
- remove_appender(self, arg0)#
Remove an appender from this logger
- Parameter
arg0
(mitsuba.Appender
): no description available
- Returns → None:
no description available
- Parameter
- set_error_level(self, arg0)#
Set the error log level (this level and anything above will throw exceptions).
The value provided here can be used for instance to turn warnings into errors. But level must always be less than Error, i.e. it isn’t possible to cause errors not to throw an exception.
- Parameter
arg0
(mitsuba.LogLevel
): no description available
- Returns → None:
no description available
- Parameter
- set_formatter(self, arg0)#
Set the logger’s formatter implementation
- Parameter
arg0
(mitsuba.Formatter
): no description available
- Returns → None:
no description available
- Parameter
- set_log_level(self, arg0)#
Set the log level (everything below will be ignored)
- Parameter
arg0
(mitsuba.LogLevel
): no description available
- Returns → None:
no description available
- Parameter
- class mitsuba.Appender#
Base class:
mitsuba.Object
This class defines an abstract destination for logging-relevant information
- __init__(self)#
- append(self, level, text)#
Append a line of text with the given log level
- Parameter
level
(mitsuba.LogLevel
): no description available
- Parameter
text
(str): no description available
- Returns → None:
no description available
- Parameter
- log_progress(self, progress, name, formatted, eta, ptr=None)#
Process a progress message
- Parameter
progress
(float): Percentage value in [0, 100]
- Parameter
name
(str): Title of the progress message
- Parameter
formatted
(str): Formatted string representation of the message
- Parameter
eta
(str): Estimated time until 100% is reached.
- Parameter
ptr
(capsule): Custom pointer payload. This is used to express the context of a progress message. When rendering a scene, it will usually contain a pointer to the associated
RenderJob
.- Returns → None:
no description available
- Parameter
Types#
- class mitsuba.ScalarBoundingBox2f#
Generic n-dimensional bounding box data structure
Maintains a minimum and maximum position along each dimension and provides various convenience functions for querying and modifying them.
This class is parameterized by the underlying point data structure, which permits the use of different scalar types and dimensionalities, e.g.
BoundingBox<Point3i> integer_bbox(Point3i(0, 1, 3), Point3i(4, 5, 6)); BoundingBox<Point2d> double_bbox(Point2d(0.0, 1.0), Point2d(4.0, 5.0));
- Template parameter
T
: The underlying point data type (e.g.
Point2d
)
- __init__(self)#
Create a new invalid bounding box
Initializes the components of the minimum and maximum position to \(\infty\) and \(-\infty\), respectively.
- __init__(self, p)#
Create a collapsed bounding box from a single point
- Parameter
p
(mitsuba.ScalarPoint2f
): no description available
- Parameter
- __init__(self, min, max)#
Create a bounding box from two positions
- Parameter
min
(mitsuba.ScalarPoint2f
): no description available
- Parameter
max
(mitsuba.ScalarPoint2f
): no description available
- Parameter
- __init__(self, arg0)#
Copy constructor
- Parameter
arg0
(mitsuba.ScalarBoundingBox2f
): no description available
- Parameter
- center(self)#
Return the center point
- Returns →
mitsuba.ScalarPoint2f
: no description available
- Returns →
- clip(self, arg0)#
Clip this bounding box to another bounding box
- Parameter
arg0
(mitsuba.ScalarBoundingBox2f
): no description available
- Returns → None:
no description available
- Parameter
- collapsed(self)#
Check whether this bounding box has collapsed to a point, line, or plane
- Returns → bool:
no description available
- contains(overloaded)#
- contains(self, p, strict=False)#
Check whether a point lies on or inside the bounding box
- Parameter
p
(mitsuba.ScalarPoint2f
): The point to be tested
- Template parameter
Strict
: Set this parameter to
True
if the bounding box boundary should be excluded in the test- Remark:
In the Python bindings, the ‘Strict’ argument is a normal function parameter with default value
False
.- Parameter
strict
(bool): no description available
- Returns → bool:
no description available
- Parameter
- contains(self, bbox, strict=False)#
Check whether a specified bounding box lies on or within the current bounding box
Note that by definition, an ‘invalid’ bounding box (where min=:math:
infty
and max=:math:-infty
) does not cover any space. Hence, this method will always return true when given such an argument.- Template parameter
Strict
: Set this parameter to
True
if the bounding box boundary should be excluded in the test- Remark:
In the Python bindings, the ‘Strict’ argument is a normal function parameter with default value
False
.- Parameter
bbox
(mitsuba.ScalarBoundingBox2f
): no description available
- Parameter
strict
(bool): no description available
- Returns → bool:
no description available
- Template parameter
- corner(self, arg0)#
Return the position of a bounding box corner
- Parameter
arg0
(int): no description available
- Returns →
mitsuba.ScalarPoint2f
: no description available
- Parameter
- distance(overloaded)#
- distance(self, arg0)#
Calculate the shortest distance between the axis-aligned bounding box and the point
p
.- Parameter
arg0
(mitsuba.ScalarPoint2f
): no description available
- Returns → float:
no description available
- Parameter
- distance(self, arg0)#
Calculate the shortest distance between the axis-aligned bounding box and
bbox
.- Parameter
arg0
(mitsuba.ScalarBoundingBox2f
): no description available
- Returns → float:
no description available
- Parameter
- expand(overloaded)#
- expand(self, arg0)#
Expand the bounding box to contain another point
- Parameter
arg0
(mitsuba.ScalarPoint2f
): no description available
- Parameter
- expand(self, arg0)#
Expand the bounding box to contain another bounding box
- Parameter
arg0
(mitsuba.ScalarBoundingBox2f
): no description available
- Parameter
- extents(self)#
Calculate the bounding box extents
- Returns →
mitsuba.ScalarVector2f
: max - min
- Returns →
- major_axis(self)#
Return the dimension index with the index associated side length
- Returns → int:
no description available
- merge(arg0, arg1)#
Merge two bounding boxes
- Parameter
arg0
(mitsuba.ScalarBoundingBox2f
): no description available
- Parameter
arg1
(mitsuba.ScalarBoundingBox2f
): no description available
- Returns →
mitsuba.ScalarBoundingBox2f
: no description available
- Parameter
- minor_axis(self)#
Return the dimension index with the shortest associated side length
- Returns → int:
no description available
- overlaps(self, bbox, strict=False)#
Check two axis-aligned bounding boxes for possible overlap.
- Parameter
Strict
: Set this parameter to
True
if the bounding box boundary should be excluded in the test- Remark:
In the Python bindings, the ‘Strict’ argument is a normal function parameter with default value
False
.- Parameter
bbox
(mitsuba.ScalarBoundingBox2f
): no description available
- Parameter
strict
(bool): no description available
- Returns → bool:
True
If overlap was detected.
- Parameter
- reset(self)#
Mark the bounding box as invalid.
This operation sets the components of the minimum and maximum position to \(\infty\) and \(-\infty\), respectively.
- Returns → None:
no description available
- squared_distance(overloaded)#
- squared_distance(self, arg0)#
Calculate the shortest squared distance between the axis-aligned bounding box and the point
p
.- Parameter
arg0
(mitsuba.ScalarPoint2f
): no description available
- Returns → float:
no description available
- Parameter
- squared_distance(self, arg0)#
Calculate the shortest squared distance between the axis-aligned bounding box and
bbox
.- Parameter
arg0
(mitsuba.ScalarBoundingBox2f
): no description available
- Returns → float:
no description available
- Parameter
- surface_area(self)#
Calculate the 2-dimensional surface area of a 3D bounding box
- Returns → float:
no description available
- valid(self)#
Check whether this is a valid bounding box
A bounding box
bbox
is considered to be valid whenbbox.min[i] <= bbox.max[i]
holds for each component
i
.- Returns → bool:
no description available
- volume(self)#
Calculate the n-dimensional volume of the bounding box
- Returns → float:
no description available
- Template parameter
- class mitsuba.ScalarBoundingBox3f#
Generic n-dimensional bounding box data structure
Maintains a minimum and maximum position along each dimension and provides various convenience functions for querying and modifying them.
This class is parameterized by the underlying point data structure, which permits the use of different scalar types and dimensionalities, e.g.
BoundingBox<Point3i> integer_bbox(Point3i(0, 1, 3), Point3i(4, 5, 6)); BoundingBox<Point2d> double_bbox(Point2d(0.0, 1.0), Point2d(4.0, 5.0));
- Template parameter
T
: The underlying point data type (e.g.
Point2d
)
- __init__(self)#
Create a new invalid bounding box
Initializes the components of the minimum and maximum position to \(\infty\) and \(-\infty\), respectively.
- __init__(self, p)#
Create a collapsed bounding box from a single point
- Parameter
p
(mitsuba.ScalarPoint3f
): no description available
- Parameter
- __init__(self, min, max)#
Create a bounding box from two positions
- Parameter
min
(mitsuba.ScalarPoint3f
): no description available
- Parameter
max
(mitsuba.ScalarPoint3f
): no description available
- Parameter
- __init__(self, arg0)#
Copy constructor
- Parameter
arg0
(mitsuba.ScalarBoundingBox3f
): no description available
- Parameter
- bounding_sphere(self)#
Create a bounding sphere, which contains the axis-aligned box
- Returns →
mitsuba.BoundingSphere
: no description available
- Returns →
- center(self)#
Return the center point
- Returns →
mitsuba.ScalarPoint3f
: no description available
- Returns →
- clip(self, arg0)#
Clip this bounding box to another bounding box
- Parameter
arg0
(mitsuba.ScalarBoundingBox3f
): no description available
- Returns → None:
no description available
- Parameter
- collapsed(self)#
Check whether this bounding box has collapsed to a point, line, or plane
- Returns → bool:
no description available
- contains(overloaded)#
- contains(self, p, strict=False)#
Check whether a point lies on or inside the bounding box
- Parameter
p
(mitsuba.ScalarPoint3f
): The point to be tested
- Template parameter
Strict
: Set this parameter to
True
if the bounding box boundary should be excluded in the test- Remark:
In the Python bindings, the ‘Strict’ argument is a normal function parameter with default value
False
.- Parameter
strict
(bool): no description available
- Returns → bool:
no description available
- Parameter
- contains(self, bbox, strict=False)#
Check whether a specified bounding box lies on or within the current bounding box
Note that by definition, an ‘invalid’ bounding box (where min=:math:
infty
and max=:math:-infty
) does not cover any space. Hence, this method will always return true when given such an argument.- Template parameter
Strict
: Set this parameter to
True
if the bounding box boundary should be excluded in the test- Remark:
In the Python bindings, the ‘Strict’ argument is a normal function parameter with default value
False
.- Parameter
bbox
(mitsuba.ScalarBoundingBox3f
): no description available
- Parameter
strict
(bool): no description available
- Returns → bool:
no description available
- Template parameter
- corner(self, arg0)#
Return the position of a bounding box corner
- Parameter
arg0
(int): no description available
- Returns →
mitsuba.ScalarPoint3f
: no description available
- Parameter
- distance(overloaded)#
- distance(self, arg0)#
Calculate the shortest distance between the axis-aligned bounding box and the point
p
.- Parameter
arg0
(mitsuba.ScalarPoint3f
): no description available
- Returns → float:
no description available
- Parameter
- distance(self, arg0)#
Calculate the shortest distance between the axis-aligned bounding box and
bbox
.- Parameter
arg0
(mitsuba.ScalarBoundingBox3f
): no description available
- Returns → float:
no description available
- Parameter
- expand(overloaded)#
- expand(self, arg0)#
Expand the bounding box to contain another point
- Parameter
arg0
(mitsuba.ScalarPoint3f
): no description available
- Parameter
- expand(self, arg0)#
Expand the bounding box to contain another bounding box
- Parameter
arg0
(mitsuba.ScalarBoundingBox3f
): no description available
- Parameter
- extents(self)#
Calculate the bounding box extents
- Returns →
mitsuba.ScalarVector3f
: max - min
- Returns →
- major_axis(self)#
Return the dimension index with the index associated side length
- Returns → int:
no description available
- merge(arg0, arg1)#
Merge two bounding boxes
- Parameter
arg0
(mitsuba.ScalarBoundingBox3f
): no description available
- Parameter
arg1
(mitsuba.ScalarBoundingBox3f
): no description available
- Returns →
mitsuba.ScalarBoundingBox3f
: no description available
- Parameter
- minor_axis(self)#
Return the dimension index with the shortest associated side length
- Returns → int:
no description available
- overlaps(self, bbox, strict=False)#
Check two axis-aligned bounding boxes for possible overlap.
- Parameter
Strict
: Set this parameter to
True
if the bounding box boundary should be excluded in the test- Remark:
In the Python bindings, the ‘Strict’ argument is a normal function parameter with default value
False
.- Parameter
bbox
(mitsuba.ScalarBoundingBox3f
): no description available
- Parameter
strict
(bool): no description available
- Returns → bool:
True
If overlap was detected.
- Parameter
- ray_intersect(self, ray)#
Check if a ray intersects a bounding box
Note that this function ignores the
maxt
value associated with the ray.- Parameter
ray
(mitsuba.Ray3f
): no description available
- Returns → Tuple[drjit.llvm.ad.Bool, drjit.llvm.ad.Float, drjit.llvm.ad.Float]:
no description available
- Parameter
- reset(self)#
Mark the bounding box as invalid.
This operation sets the components of the minimum and maximum position to \(\infty\) and \(-\infty\), respectively.
- Returns → None:
no description available
- squared_distance(overloaded)#
- squared_distance(self, arg0)#
Calculate the shortest squared distance between the axis-aligned bounding box and the point
p
.- Parameter
arg0
(mitsuba.ScalarPoint3f
): no description available
- Returns → float:
no description available
- Parameter
- squared_distance(self, arg0)#
Calculate the shortest squared distance between the axis-aligned bounding box and
bbox
.- Parameter
arg0
(mitsuba.ScalarBoundingBox3f
): no description available
- Returns → float:
no description available
- Parameter
- surface_area(self)#
Calculate the 2-dimensional surface area of a 3D bounding box
- Returns → float:
no description available
- valid(self)#
Check whether this is a valid bounding box
A bounding box
bbox
is considered to be valid whenbbox.min[i] <= bbox.max[i]
holds for each component
i
.- Returns → bool:
no description available
- volume(self)#
Calculate the n-dimensional volume of the bounding box
- Returns → float:
no description available
- Template parameter
- class mitsuba.ScalarBoundingSphere3f#
Generic n-dimensional bounding sphere data structure
- __init__(self)#
Construct bounding sphere(s) at the origin having radius zero
- __init__(self, arg0, arg1)#
Create bounding sphere(s) from given center point(s) with given size(s)
- Parameter
arg0
(mitsuba.ScalarPoint3f
): no description available
- Parameter
arg1
(float): no description available
- Parameter
- __init__(self, arg0)#
- Parameter
arg0
(mitsuba.ScalarBoundingSphere3f
): no description available
- Parameter
- contains(self, p, strict=False)#
Check whether a point lies on or inside the bounding sphere
- Parameter
p
(mitsuba.ScalarPoint3f
): The point to be tested
- Template parameter
Strict
: Set this parameter to
True
if the bounding sphere boundary should be excluded in the test- Remark:
In the Python bindings, the ‘Strict’ argument is a normal function parameter with default value
False
.- Parameter
strict
(bool): no description available
- Returns → bool:
no description available
- Parameter
- empty(self)#
Return whether this bounding sphere has a radius of zero or less.
- Returns → bool:
no description available
- expand(self, arg0)#
Expand the bounding sphere radius to contain another point.
- Parameter
arg0
(mitsuba.ScalarPoint3f
): no description available
- Returns → None:
no description available
- Parameter
- ray_intersect(self, ray)#
Check if a ray intersects a bounding box
- Parameter
ray
(mitsuba.Ray3f
): no description available
- Returns → Tuple[drjit.llvm.ad.Bool, drjit.llvm.ad.Float, drjit.llvm.ad.Float]:
no description available
- Parameter
- class mitsuba.ScalarColor0d#
- class mitsuba.ScalarColor0f#
- class mitsuba.ScalarColor1d#
- class mitsuba.ScalarColor1f#
- class mitsuba.ScalarColor3d#
- class mitsuba.ScalarColor3f#
- class mitsuba.ScalarNormal3d#
- class mitsuba.ScalarNormal3f#
- class mitsuba.ScalarPoint0d#
- class mitsuba.ScalarPoint0f#
- class mitsuba.ScalarPoint0i#
- class mitsuba.ScalarPoint0u#
- class mitsuba.ScalarPoint1d#
- class mitsuba.ScalarPoint1f#
- class mitsuba.ScalarPoint1i#
- class mitsuba.ScalarPoint1u#
- class mitsuba.ScalarPoint2d#
- class mitsuba.ScalarPoint2f#
- class mitsuba.ScalarPoint2i#
- class mitsuba.ScalarPoint2u#
- class mitsuba.ScalarPoint3d#
- class mitsuba.ScalarPoint3f#
- class mitsuba.ScalarPoint3i#
- class mitsuba.ScalarPoint3u#
- class mitsuba.ScalarPoint4d#
- class mitsuba.ScalarPoint4f#
- class mitsuba.ScalarPoint4i#
- class mitsuba.ScalarPoint4u#
- class mitsuba.ScalarTransform3d#
Encapsulates a 4x4 homogeneous coordinate transformation along with its inverse transpose
The Transform class provides a set of overloaded matrix-vector multiplication operators for vectors, points, and normals (all of them behave differently under homogeneous coordinate transformations, hence the need to represent them using separate types)
- __init__(self)#
Initialize with the identity matrix
- __init__(self, arg0)#
Copy constructor
- Parameter
arg0
(mitsuba.ScalarTransform3d
): no description available
- Parameter
- __init__(self, arg0)#
- Parameter
arg0
(numpy.ndarray): no description available
- Parameter
- __init__(self, arg0)#
- Parameter
arg0
(list): no description available
- Parameter
- __init__(self, arg0)#
Initialize the transformation from the given matrix (and compute its inverse transpose)
- Parameter
arg0
(drjit.scalar.Matrix3f64): no description available
- Parameter
- __init__(self, arg0, arg1)#
Initialize from a matrix and its inverse transpose
- Parameter
arg0
(drjit.scalar.Matrix3f64): no description available
- Parameter
arg1
(drjit.scalar.Matrix3f64): no description available
- Parameter
- assign(self, arg0)#
- Parameter
arg0
(mitsuba.ScalarTransform3d
): no description available
- Returns → None:
no description available
- Parameter
- has_scale(overloaded)#
- has_scale(self)#
Test for a scale component in each transform matrix by checking whether
M . M^T == I
(whereM
is the matrix in question andI
is the identity).- Returns → bool:
no description available
- has_scale(self)#
Test for a scale component in each transform matrix by checking whether
M . M^T == I
(whereM
is the matrix in question andI
is the identity).- Returns → bool:
no description available
- inverse(self)#
Compute the inverse of this transformation (involves just shuffles, no arithmetic)
- Returns →
mitsuba.ScalarTransform3d
: no description available
- Returns →
- rotate(angle)#
Create a rotation transformation in 2D. The angle is specified in degrees
- Parameter
angle
(float): no description available
- Returns → ChainTransform<double, 3>:
no description available
- Parameter
- scale(v)#
Create a scale transformation
- Parameter
v
(mitsuba.ScalarPoint2d
): no description available
- Returns → ChainTransform<double, 3>:
no description available
- Parameter
- transform_affine(overloaded)#
- transform_affine(self, p)#
Transform a 3D vector/point/normal/ray by a transformation that is known to be an affine 3D transformation (i.e. no perspective)
- Parameter
p
(mitsuba.ScalarPoint2d
): no description available
- Returns →
mitsuba.ScalarPoint2d
: no description available
- Parameter
- transform_affine(self, v)#
Transform a 3D vector/point/normal/ray by a transformation that is known to be an affine 3D transformation (i.e. no perspective)
- Parameter
v
(mitsuba.ScalarVector2d
): no description available
- Returns →
mitsuba.ScalarVector2d
: no description available
- Parameter
- translate(v)#
Create a translation transformation
- Parameter
v
(mitsuba.ScalarPoint2d
): no description available
- Returns → ChainTransform<double, 3>:
no description available
- Parameter
- translation(self)#
Get the translation part of a matrix
- Returns →
mitsuba.ScalarVector2d
: no description available
- Returns →
- class mitsuba.ScalarTransform3f#
Encapsulates a 4x4 homogeneous coordinate transformation along with its inverse transpose
The Transform class provides a set of overloaded matrix-vector multiplication operators for vectors, points, and normals (all of them behave differently under homogeneous coordinate transformations, hence the need to represent them using separate types)
- __init__(self)#
Initialize with the identity matrix
- __init__(self, arg0)#
Copy constructor
- Parameter
arg0
(mitsuba.ScalarTransform3f
): no description available
- Parameter
- __init__(self, arg0)#
- Parameter
arg0
(numpy.ndarray): no description available
- Parameter
- __init__(self, arg0)#
- Parameter
arg0
(list): no description available
- Parameter
- __init__(self, arg0)#
Initialize the transformation from the given matrix (and compute its inverse transpose)
- Parameter
arg0
(drjit.scalar.Matrix3f): no description available
- Parameter
- __init__(self, arg0, arg1)#
Initialize from a matrix and its inverse transpose
- Parameter
arg0
(drjit.scalar.Matrix3f): no description available
- Parameter
arg1
(drjit.scalar.Matrix3f): no description available
- Parameter
- assign(self, arg0)#
- Parameter
arg0
(mitsuba.ScalarTransform3f
): no description available
- Returns → None:
no description available
- Parameter
- has_scale(overloaded)#
- has_scale(self)#
Test for a scale component in each transform matrix by checking whether
M . M^T == I
(whereM
is the matrix in question andI
is the identity).- Returns → bool:
no description available
- has_scale(self)#
Test for a scale component in each transform matrix by checking whether
M . M^T == I
(whereM
is the matrix in question andI
is the identity).- Returns → bool:
no description available
- inverse(self)#
Compute the inverse of this transformation (involves just shuffles, no arithmetic)
- Returns →
mitsuba.ScalarTransform3f
: no description available
- Returns →
- rotate(angle)#
Create a rotation transformation in 2D. The angle is specified in degrees
- Parameter
angle
(float): no description available
- Returns → ChainTransform<float, 3>:
no description available
- Parameter
- scale(v)#
Create a scale transformation
- Parameter
v
(mitsuba.ScalarPoint2f
): no description available
- Returns → ChainTransform<float, 3>:
no description available
- Parameter
- transform_affine(overloaded)#
- transform_affine(self, p)#
Transform a 3D vector/point/normal/ray by a transformation that is known to be an affine 3D transformation (i.e. no perspective)
- Parameter
p
(mitsuba.ScalarPoint2f
): no description available
- Returns →
mitsuba.ScalarPoint2f
: no description available
- Parameter
- transform_affine(self, v)#
Transform a 3D vector/point/normal/ray by a transformation that is known to be an affine 3D transformation (i.e. no perspective)
- Parameter
v
(mitsuba.ScalarVector2f
): no description available
- Returns →
mitsuba.ScalarVector2f
: no description available
- Parameter
- translate(v)#
Create a translation transformation
- Parameter
v
(mitsuba.ScalarPoint2f
): no description available
- Returns → ChainTransform<float, 3>:
no description available
- Parameter
- translation(self)#
Get the translation part of a matrix
- Returns →
mitsuba.ScalarVector2f
: no description available
- Returns →
- class mitsuba.ScalarTransform4d#
Encapsulates a 4x4 homogeneous coordinate transformation along with its inverse transpose
The Transform class provides a set of overloaded matrix-vector multiplication operators for vectors, points, and normals (all of them behave differently under homogeneous coordinate transformations, hence the need to represent them using separate types)
- __init__(self)#
Initialize with the identity matrix
- __init__(self, arg0)#
Copy constructor
- Parameter
arg0
(mitsuba.ScalarTransform4d
): no description available
- Parameter
- __init__(self, arg0)#
- Parameter
arg0
(numpy.ndarray): no description available
- Parameter
- __init__(self, arg0)#
- Parameter
arg0
(list): no description available
- Parameter
- __init__(self, arg0)#
Initialize the transformation from the given matrix (and compute its inverse transpose)
- Parameter
arg0
(drjit.scalar.Matrix4f64): no description available
- Parameter
- __init__(self, arg0, arg1)#
Initialize from a matrix and its inverse transpose
- Parameter
arg0
(drjit.scalar.Matrix4f64): no description available
- Parameter
arg1
(drjit.scalar.Matrix4f64): no description available
- Parameter
- assign(self, arg0)#
- Parameter
arg0
(mitsuba.ScalarTransform4d
): no description available
- Returns → None:
no description available
- Parameter
- extract(self)#
Extract a lower-dimensional submatrix
- Returns →
mitsuba.ScalarTransform3d
: no description available
- Returns →
- from_frame(frame)#
Creates a transformation that converts from ‘frame’ to the standard basis
- Parameter
frame
(mitsuba.Frame
): no description available
- Returns → ChainTransform<double, 4>:
no description available
- Parameter
- has_scale(overloaded)#
- has_scale(self)#
Test for a scale component in each transform matrix by checking whether
M . M^T == I
(whereM
is the matrix in question andI
is the identity).- Returns → bool:
no description available
- has_scale(self)#
Test for a scale component in each transform matrix by checking whether
M . M^T == I
(whereM
is the matrix in question andI
is the identity).- Returns → bool:
no description available
- inverse(self)#
Compute the inverse of this transformation (involves just shuffles, no arithmetic)
- Returns →
mitsuba.ScalarTransform4d
: no description available
- Returns →
- look_at(origin, target, up)#
Create a look-at camera transformation
- Parameter
origin
(mitsuba.ScalarPoint3d
): Camera position
- Parameter
target
(mitsuba.ScalarPoint3d
): Target vector
- Parameter
up
(mitsuba.ScalarPoint3d
): Up vector
- Returns → ChainTransform<double, 4>:
no description available
- Parameter
- orthographic(near, far)#
Create an orthographic transformation, which maps Z to [0,1] and leaves the X and Y coordinates untouched.
- Parameter
near
(float): Near clipping plane
- Parameter
far
(float): Far clipping plane
- Returns → ChainTransform<double, 4>:
no description available
- Parameter
- perspective(fov, near, far)#
Create a perspective transformation. (Maps [near, far] to [0, 1])
Projects vectors in camera space onto a plane at z=1:
x_proj = x / z y_proj = y / z z_proj = (far * (z - near)) / (z * (far- near))
Camera-space depths are not mapped linearly!
- Parameter
fov
(float): Field of view in degrees
- Parameter
near
(float): Near clipping plane
- Parameter
far
(float): Far clipping plane
- Returns → ChainTransform<double, 4>:
no description available
- Parameter
- rotate(axis, angle)#
Create a rotation transformation around an arbitrary axis in 3D. The angle is specified in degrees
- Parameter
axis
(mitsuba.ScalarPoint3d
): no description available
- Parameter
angle
(float): no description available
- Returns → ChainTransform<double, 4>:
no description available
- Parameter
- scale(v)#
Create a scale transformation
- Parameter
v
(mitsuba.ScalarPoint3d
): no description available
- Returns → ChainTransform<double, 4>:
no description available
- Parameter
- to_frame(frame)#
Creates a transformation that converts from the standard basis to ‘frame’
- Parameter
frame
(mitsuba.Frame
): no description available
- Returns → ChainTransform<double, 4>:
no description available
- Parameter
- transform_affine(overloaded)#
- transform_affine(self, p)#
Transform a 3D vector/point/normal/ray by a transformation that is known to be an affine 3D transformation (i.e. no perspective)
- Parameter
p
(mitsuba.ScalarPoint3d
): no description available
- Returns →
mitsuba.ScalarPoint3d
: no description available
- Parameter
- transform_affine(self, ray)#
Transform a 3D vector/point/normal/ray by a transformation that is known to be an affine 3D transformation (i.e. no perspective)
- Parameter
ray
(mitsuba.Ray
): no description available
- Returns →
mitsuba.Ray
: no description available
- Parameter
- transform_affine(self, v)#
Transform a 3D vector/point/normal/ray by a transformation that is known to be an affine 3D transformation (i.e. no perspective)
- Parameter
v
(mitsuba.ScalarVector3d
): no description available
- Returns →
mitsuba.ScalarVector3d
: no description available
- Parameter
- transform_affine(self, n)#
Transform a 3D vector/point/normal/ray by a transformation that is known to be an affine 3D transformation (i.e. no perspective)
- Parameter
n
(mitsuba.ScalarNormal3d
): no description available
- Returns →
mitsuba.ScalarNormal3d
: no description available
- Parameter
- translate(v)#
Create a translation transformation
- Parameter
v
(mitsuba.ScalarPoint3d
): no description available
- Returns → ChainTransform<double, 4>:
no description available
- Parameter
- translation(self)#
Get the translation part of a matrix
- Returns →
mitsuba.ScalarVector3d
: no description available
- Returns →
- class mitsuba.ScalarTransform4f#
Encapsulates a 4x4 homogeneous coordinate transformation along with its inverse transpose
The Transform class provides a set of overloaded matrix-vector multiplication operators for vectors, points, and normals (all of them behave differently under homogeneous coordinate transformations, hence the need to represent them using separate types)
- __init__(self)#
Initialize with the identity matrix
- __init__(self, arg0)#
Copy constructor
- Parameter
arg0
(mitsuba.ScalarTransform4f
): no description available
- Parameter
- __init__(self, arg0)#
- Parameter
arg0
(numpy.ndarray): no description available
- Parameter
- __init__(self, arg0)#
- Parameter
arg0
(list): no description available
- Parameter
- __init__(self, arg0)#
Initialize the transformation from the given matrix (and compute its inverse transpose)
- Parameter
arg0
(drjit.scalar.Matrix4f): no description available
- Parameter
- __init__(self, arg0, arg1)#
Initialize from a matrix and its inverse transpose
- Parameter
arg0
(drjit.scalar.Matrix4f): no description available
- Parameter
arg1
(drjit.scalar.Matrix4f): no description available
- Parameter
- assign(self, arg0)#
- Parameter
arg0
(mitsuba.ScalarTransform4f
): no description available
- Returns → None:
no description available
- Parameter
- extract(self)#
Extract a lower-dimensional submatrix
- Returns →
mitsuba.ScalarTransform3f
: no description available
- Returns →
- from_frame(frame)#
Creates a transformation that converts from ‘frame’ to the standard basis
- Parameter
frame
(mitsuba.Frame
): no description available
- Returns → ChainTransform<float, 4>:
no description available
- Parameter
- has_scale(overloaded)#
- has_scale(self)#
Test for a scale component in each transform matrix by checking whether
M . M^T == I
(whereM
is the matrix in question andI
is the identity).- Returns → bool:
no description available
- has_scale(self)#
Test for a scale component in each transform matrix by checking whether
M . M^T == I
(whereM
is the matrix in question andI
is the identity).- Returns → bool:
no description available
- inverse(self)#
Compute the inverse of this transformation (involves just shuffles, no arithmetic)
- Returns →
mitsuba.ScalarTransform4f
: no description available
- Returns →
- look_at(origin, target, up)#
Create a look-at camera transformation
- Parameter
origin
(mitsuba.ScalarPoint3f
): Camera position
- Parameter
target
(mitsuba.ScalarPoint3f
): Target vector
- Parameter
up
(mitsuba.ScalarPoint3f
): Up vector
- Returns → ChainTransform<float, 4>:
no description available
- Parameter
- orthographic(near, far)#
Create an orthographic transformation, which maps Z to [0,1] and leaves the X and Y coordinates untouched.
- Parameter
near
(float): Near clipping plane
- Parameter
far
(float): Far clipping plane
- Returns → ChainTransform<float, 4>:
no description available
- Parameter
- perspective(fov, near, far)#
Create a perspective transformation. (Maps [near, far] to [0, 1])
Projects vectors in camera space onto a plane at z=1:
x_proj = x / z y_proj = y / z z_proj = (far * (z - near)) / (z * (far- near))
Camera-space depths are not mapped linearly!
- Parameter
fov
(float): Field of view in degrees
- Parameter
near
(float): Near clipping plane
- Parameter
far
(float): Far clipping plane
- Returns → ChainTransform<float, 4>:
no description available
- Parameter
- rotate(axis, angle)#
Create a rotation transformation around an arbitrary axis in 3D. The angle is specified in degrees
- Parameter
axis
(mitsuba.ScalarPoint3f
): no description available
- Parameter
angle
(float): no description available
- Returns → ChainTransform<float, 4>:
no description available
- Parameter
- scale(v)#
Create a scale transformation
- Parameter
v
(mitsuba.ScalarPoint3f
): no description available
- Returns → ChainTransform<float, 4>:
no description available
- Parameter
- to_frame(frame)#
Creates a transformation that converts from the standard basis to ‘frame’
- Parameter
frame
(mitsuba.Frame
): no description available
- Returns → ChainTransform<float, 4>:
no description available
- Parameter
- transform_affine(overloaded)#
- transform_affine(self, p)#
Transform a 3D vector/point/normal/ray by a transformation that is known to be an affine 3D transformation (i.e. no perspective)
- Parameter
p
(mitsuba.ScalarPoint3f
): no description available
- Returns →
mitsuba.ScalarPoint3f
: no description available
- Parameter
- transform_affine(self, ray)#
Transform a 3D vector/point/normal/ray by a transformation that is known to be an affine 3D transformation (i.e. no perspective)
- Parameter
ray
(mitsuba.Ray
): no description available
- Returns →
mitsuba.Ray
: no description available
- Parameter
- transform_affine(self, v)#
Transform a 3D vector/point/normal/ray by a transformation that is known to be an affine 3D transformation (i.e. no perspective)
- Parameter
v
(mitsuba.ScalarVector3f
): no description available
- Returns →
mitsuba.ScalarVector3f
: no description available
- Parameter
- transform_affine(self, n)#
Transform a 3D vector/point/normal/ray by a transformation that is known to be an affine 3D transformation (i.e. no perspective)
- Parameter
n
(mitsuba.ScalarNormal3f
): no description available
- Returns →
mitsuba.ScalarNormal3f
: no description available
- Parameter
- translate(v)#
Create a translation transformation
- Parameter
v
(mitsuba.ScalarPoint3f
): no description available
- Returns → ChainTransform<float, 4>:
no description available
- Parameter
- translation(self)#
Get the translation part of a matrix
- Returns →
mitsuba.ScalarVector3f
: no description available
- Returns →
- class mitsuba.ScalarVector0d#
- class mitsuba.ScalarVector0f#
- class mitsuba.ScalarVector0i#
- class mitsuba.ScalarVector0u#